Suppr超能文献

基于数据的 SARS-CoV-2 大流行期间的积极偏差——德国地区的生态试点研究。

Data-Powered Positive Deviance during the SARS-CoV-2 Pandemic-An Ecological Pilot Study of German Districts.

机构信息

Driesen Data Analytics, 04317 Leipzig, Germany.

Department of Global Public Health, Karolinska Institutet, Solna, 17177 Stockholm, Sweden.

出版信息

Int J Environ Res Public Health. 2021 Sep 16;18(18):9765. doi: 10.3390/ijerph18189765.

Abstract

We introduced the mixed-methods Data-Powered Positive Deviance (DPPD) framework as a potential addition to the set of tools used to search for effective response strategies against the SARS-CoV-2 pandemic. For this purpose, we conducted a DPPD study in the context of the early stages of the German SARS-CoV-2 pandemic. We used a framework of scalable quantitative methods to identify positively deviant German districts that is novel in the scientific literature on DPPD, and subsequently employed qualitative methods to identify factors that might have contributed to their comparatively successful reduction of the forward transmission rate. Our qualitative analysis suggests that quick, proactive, decisive, and flexible/pragmatic actions, the willingness to take risks and deviate from standard procedures, good information flows both in terms of data collection and public communication, alongside the utilization of social network effects were deemed highly important by the interviewed districts. Our study design with its small qualitative sample constitutes an exploratory and illustrative effort and hence does not allow for a clear causal link to be established. Thus, the results cannot necessarily be extrapolated to other districts as is. However, the findings indicate areas for further research to assess these strategies' effectiveness in a broader study setting. We conclude by stressing DPPD's strengths regarding replicability, scalability, adaptability, as well as its focus on local solutions, which make it a promising framework to be applied in various contexts, e.g., in the context of the Global South.

摘要

我们引入了混合方法数据驱动的正向偏离(DPPD)框架,作为用于寻找对抗 SARS-CoV-2 大流行的有效应对策略的工具集的潜在补充。为此,我们在德国 SARS-CoV-2 大流行的早期阶段进行了 DPPD 研究。我们使用了一种可扩展的定量方法框架来识别正向偏离的德国地区,这在 DPPD 的科学文献中是新颖的,随后采用定性方法来识别可能促成其相对成功降低正向传播率的因素。我们的定性分析表明,快速、积极主动、果断和灵活/务实的行动、愿意冒险和偏离标准程序、良好的数据收集和公众沟通信息流动,以及利用社交网络效应,被接受采访的地区认为非常重要。我们的研究设计及其小的定性样本构成了探索性和说明性的努力,因此不能建立明确的因果关系。因此,这些结果不能理所当然地推广到其他地区。然而,这些发现指出了进一步研究的领域,以评估这些策略在更广泛的研究环境中的有效性。我们最后强调了 DPPD 的可重复性、可扩展性、适应性以及对本地解决方案的关注等优势,这使其成为在各种情况下应用的有前途的框架,例如在全球南方的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c80b/8469362/3452a587fcb5/ijerph-18-09765-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验