Suppr超能文献

基于小波的神经标记物检测 MEG 功能连接对轻度认知障碍的识别。

Detection of Mild Cognitive Impairment with MEG Functional Connectivity Using Wavelet-Based Neuromarkers.

机构信息

Department of Computer Science, Swansea University, Swansea SA1 8EN, UK.

Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry BT48 7JL, UK.

出版信息

Sensors (Basel). 2021 Sep 16;21(18):6210. doi: 10.3390/s21186210.

Abstract

Studies on developing effective neuromarkers based on magnetoencephalographic (MEG) signals have been drawing increasing attention in the neuroscience community. This study explores the idea of using source-based magnitude-squared spectral coherence as a spatial indicator for effective regions of interest (ROIs) localization, subsequently discriminating the participants with mild cognitive impairment (MCI) from a group of age-matched healthy control (HC) elderly participants. We found that the cortical regions could be divided into two distinctive groups based on their coherence indices. Compared to HC, some ROIs showed increased connectivity (hyper-connected ROIs) for MCI participants, whereas the remaining ROIs demonstrated reduced connectivity (hypo-connected ROIs). Based on these findings, a series of wavelet-based source-level neuromarkers for MCI detection are proposed and explored, with respect to the two distinctive ROI groups. It was found that the neuromarkers extracted from the hyper-connected ROIs performed significantly better for MCI detection than those from the hypo-connected ROIs. The neuromarkers were classified using support vector machine (SVM) and k-NN classifiers and evaluated through Monte Carlo cross-validation. An average recognition rate of 93.83% was obtained using source-reconstructed signals from the hyper-connected ROI group. To better conform to clinical practice settings, a leave-one-out cross-validation (LOOCV) approach was also employed to ensure that the data for testing was from a participant that the classifier has never seen. Using LOOCV, we found the best average classification accuracy was reduced to 83.80% using the same set of neuromarkers obtained from the ROI group with functional hyper-connections. This performance surpassed the results reported using wavelet-based features by approximately 15%. Overall, our work suggests that (1) certain ROIs are particularly effective for MCI detection, especially when multi-resolution wavelet biomarkers are employed for such diagnosis; (2) there exists a significant performance difference in system evaluation between research-based experimental design and clinically accepted evaluation standards.

摘要

基于脑磁图(MEG)信号的有效神经标志物的研究在神经科学界受到越来越多的关注。本研究探讨了使用基于源的平方幅度谱相干性作为有效感兴趣区域(ROI)定位的空间指标的想法,随后将轻度认知障碍(MCI)患者与一组年龄匹配的健康对照组(HC)老年人参与者区分开来。我们发现,根据它们的相干指数,皮质区域可以分为两个不同的组。与 HC 相比,一些 ROI 显示出 MCI 参与者的连接增加(超连接 ROI),而其余 ROI 显示出连接减少(低连接 ROI)。基于这些发现,针对这两个不同的 ROI 组,提出并探讨了一系列基于小波的 MCI 检测源水平神经标志物。结果发现,从超连接 ROI 提取的神经标志物在 MCI 检测方面的性能明显优于从低连接 ROI 提取的神经标志物。使用支持向量机(SVM)和 k-NN 分类器对神经标志物进行分类,并通过蒙特卡罗交叉验证进行评估。使用超连接 ROI 组的源重构信号获得了 93.83%的平均识别率。为了更好地符合临床实践设置,还采用了留一交叉验证(LOOCV)方法,以确保用于测试的数据来自分类器从未见过的参与者。使用 LOOCV,我们发现,使用来自功能超连接 ROI 组的相同一组神经标志物,最佳平均分类精度降低到 83.80%。这种性能比使用基于小波的特征报告的结果提高了约 15%。总体而言,我们的工作表明:(1)某些 ROI 特别适用于 MCI 检测,尤其是在使用多分辨率小波生物标志物进行此类诊断时;(2)在研究型实验设计和临床可接受的评估标准之间,系统评估存在显著的性能差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验