Suppr超能文献

利用皮质形态模式预测阿尔茨海默病和轻度认知障碍。

Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns.

机构信息

Image Display, Enhancement, and Analysis (IDEA) Laboratory, Biomedical Research Imaging Center (BRIC), Department of Radiology, University of North Carolina at Chapel Hill, North Carolina, USA.

出版信息

Hum Brain Mapp. 2013 Dec;34(12):3411-25. doi: 10.1002/hbm.22156. Epub 2012 Aug 28.

Abstract

This article describes a novel approach to extract cortical morphological abnormality patterns from structural magnetic resonance imaging (MRI) data to improve the prediction accuracy of Alzheimer's disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Conventional approaches extract cortical morphological information, such as regional mean cortical thickness and regional cortical volumes, independently at different regions of interest (ROIs) without considering the relationship between these regions. Our approach involves constructing a similarity map where every element in the map represents the correlation of regional mean cortical thickness between a pair of ROIs. We will demonstrate in this article that this correlative morphological information gives significant improvement in classification performance when compared with ROI-based morphological information. Classification performance is further improved by integrating the correlative information with ROI-based information via multi-kernel support vector machines. This integrated framework achieves an accuracy of 92.35% for AD classification with an area of 0.9744 under the receiver operating characteristic (ROC) curve, and an accuracy of 83.75% for MCI classification with an area of 0.9233. In differentiating MCI subjects who converted to AD within 36 months from non-converters, an accuracy of 75.05% with an area of 0.8426 under ROC curve was achieved, indicating excellent diagnostic power and generalizability. The current work provides an alternative approach to extraction of high-order cortical information from structural MRI data for prediction of neurodegenerative diseases such as AD.

摘要

本文描述了一种从结构磁共振成像 (MRI) 数据中提取皮质形态异常模式的新方法,以提高阿尔茨海默病 (AD) 及其前驱阶段,即轻度认知障碍 (MCI) 的预测准确性。传统方法独立于不同的感兴趣区域 (ROI) 提取皮质形态信息,如区域平均皮质厚度和区域皮质体积,而不考虑这些区域之间的关系。我们的方法涉及构建一个相似性图,其中该图中的每个元素表示一对 ROI 之间的区域平均皮质厚度的相关性。本文将证明,与基于 ROI 的形态信息相比,这种相关的形态信息在分类性能上有显著提高。通过多核支持向量机将相关信息与基于 ROI 的信息集成,可进一步提高分类性能。该集成框架在接收者操作特征 (ROC) 曲线下的 AD 分类准确率为 92.35%,面积为 0.9744,MCI 分类准确率为 83.75%,面积为 0.9233。在区分在 36 个月内从非转化者转化为 AD 的 MCI 患者时,ROC 曲线下的准确率为 75.05%,面积为 0.8426,表明具有出色的诊断能力和通用性。目前的工作提供了一种从结构 MRI 数据中提取高阶皮质信息的替代方法,用于预测 AD 等神经退行性疾病。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验