Suppr超能文献

基于 Adaboost 的机器学习提高了田间可见-近红外光谱法建模稳健性和估算梨叶片氮浓度的精度。

Adaboost-Based Machine Learning Improved the Modeling Robust and Estimation Accuracy of Pear Leaf Nitrogen Concentration by In-Field VIS-NIR Spectroscopy.

机构信息

College of Resources and Environment, Southwest University, Chongqing 400716, China.

College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.

出版信息

Sensors (Basel). 2021 Sep 18;21(18):6260. doi: 10.3390/s21186260.

Abstract

Different cultivars of pear trees are often planted in one orchard to enhance yield for its gametophytic self-incompatibility. Therefore, an accurate and robust modelling method is needed for the non-destructive determination of leaf nitrogen (N) concentration in pear orchards with mixed cultivars. This study proposes a new technique based on in-field visible-near infrared (VIS-NIR) spectroscopy and the Adaboost algorithm initiated with machine learning methods. The performance was evaluated by estimating leaf N concentration for a total of 1285 samples from different cultivars, growth regions, and tree ages and compared with traditional techniques, including vegetation indices, partial least squares regression, singular support vector regression (SVR) and neural networks (NN). The results demonstrated that the leaf reflectance responded to the leaf nitrogen concentration were more sensitive to the types of cultivars than to the different growing regions and tree ages. Moreover, the AdaBoost.RT-BP had the best accuracy in both the training (R = 0.96, root mean relative error (RMSE) = 1.03 g kg) and the test datasets (R = 0.91, RMSE = 1.29 g kg), and was the most robust in repeated experiments. This study provides a new insight for monitoring the status of pear trees by the in-field VIS-NIR spectroscopy for better N managements in heterogeneous pear orchards.

摘要

不同品种的梨树通常种植在一个果园里,以提高其配子体自交不亲和性的产量。因此,需要一种准确且强大的建模方法,用于无损测定具有混合品种的梨园叶片氮(N)浓度。本研究提出了一种基于田间可见近红外(VIS-NIR)光谱和基于机器学习方法的 Adaboost 算法的新技术。通过对来自不同品种、生长区域和树龄的 1285 个样本的叶片 N 浓度进行估计,评估了该技术的性能,并与传统技术(包括植被指数、偏最小二乘回归、奇异支持向量回归(SVR)和神经网络(NN))进行了比较。结果表明,叶片反射率对叶片氮浓度的响应比不同的生长区域和树龄更敏感。此外,AdaBoost.RT-BP 在训练集(R = 0.96,根均方相对误差(RMSE)= 1.03 g kg)和测试集(R = 0.91,RMSE = 1.29 g kg)中均具有最佳的准确性,并且在重复实验中最稳健。本研究为通过田间 VIS-NIR 光谱监测梨树的状况提供了新的见解,以便在异质梨园更好地进行 N 管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd3/8473462/618586d570c9/sensors-21-06260-g001.jpg

相似文献

5
Determination of leaf nitrogen content in apple and jujube by near-infrared spectroscopy.
Sci Rep. 2024 Sep 6;14(1):20884. doi: 10.1038/s41598-024-71590-1.
7
Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy.
Sci Total Environ. 2022 Feb 25;809:151107. doi: 10.1016/j.scitotenv.2021.151107. Epub 2021 Oct 21.
9
Pear quality characteristics by Vis / NIR spectroscopy.
An Acad Bras Cienc. 2012 Sep;84(3):853-63. doi: 10.1590/s0001-37652012000300027.

引用本文的文献

2
flexible wearable tomato growth sensor: monitoring of leaf physiological characteristics.
Front Plant Sci. 2025 Mar 21;16:1546373. doi: 10.3389/fpls.2025.1546373. eCollection 2025.
4
Down regulation of Cathepsin W is associated with poor prognosis in pancreatic cancer.
Sci Rep. 2023 Oct 4;13(1):16678. doi: 10.1038/s41598-023-42928-y.

本文引用的文献

2
Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods.
Surv Geophys. 2019;40:589-629. doi: 10.1007/s10712-018-9478-y. Epub 2018 Jun 1.
4
Support Vector Machine Classifier With Pinball Loss.
IEEE Trans Pattern Anal Mach Intell. 2014 May;36(5):984-97. doi: 10.1109/TPAMI.2013.178.
5
Recent developments in fast spectroscopy for plant mineral analysis.
Front Plant Sci. 2015 Mar 24;6:169. doi: 10.3389/fpls.2015.00169. eCollection 2015.
6
Estimating biophysical parameters of rice with remote sensing data using support vector machines.
Sci China Life Sci. 2011 Mar;54(3):272-81. doi: 10.1007/s11427-011-4135-4. Epub 2011 Mar 16.
7
Significant acidification in major Chinese croplands.
Science. 2010 Feb 19;327(5968):1008-10. doi: 10.1126/science.1182570. Epub 2010 Feb 11.
8
Reducing environmental risk by improving N management in intensive Chinese agricultural systems.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3041-6. doi: 10.1073/pnas.0813417106. Epub 2009 Feb 17.
9
Experiments with AdaBoost.RT, an improved boosting scheme for regression.
Neural Comput. 2006 Jul;18(7):1678-710. doi: 10.1162/neco.2006.18.7.1678.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验