Suppr超能文献

使用酶介导转移印刷法制造软组织支架模拟微电极阵列

Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing.

作者信息

Lin Yue-Xian, Li Shu-Han, Huang Wei-Chen

机构信息

Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

Undergraduate Honors Program of Nano Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

出版信息

Micromachines (Basel). 2021 Aug 31;12(9):1057. doi: 10.3390/mi12091057.

Abstract

Hydrogels are the ideal materials in the development of implanted bioactive neural interfaces because of the nerve tissue-mimicked physical and biological properties that can enhance neural interfacing compatibility. However, the integration of hydrogels and rigid/dehydrated electronic microstructure is challenging due to the non-reliable interfacial bonding, whereas hydrogels are not compatible with most conditions required for the micromachined fabrication process. Herein, we propose a new enzyme-mediated transfer printing process to design an adhesive biological hydrogel neural interface. The donor substrate was fabricated via photo-crosslinking of gelatin methacryloyl (GelMA) containing various conductive nanoparticles (NPs), including Ag nanowires (NWs), Pt NWs, and PEDOT:PSS, to form a stretchable conductive bioelectrode, called NP-doped GelMA. On the other hand, a receiver substrate composed of microbial transglutaminase-incorporated gelatin (mTG-Gln) enabled simultaneous temporally controlled gelation and covalent bond-enhanced adhesion to achieve one-step transfer printing of the prefabricated NP-doped GelMA features. The integrated hydrogel microelectrode arrays (MEA) were adhesive, and mechanically/structurally bio-compliant with stable conductivity. The devices were structurally stable in moisture to support the growth of neuronal cells. Despite that the introduction of AgNW and PEDOT:PSS NPs in the hydrogels needed further study to avoid cell toxicity, the PtNW-doped GelMA exhibited a comparable live cell density. This Gln-based MEA is expected to be the next-generation bioactive neural interface.

摘要

水凝胶因其模仿神经组织的物理和生物学特性而成为植入式生物活性神经接口开发中的理想材料,这些特性可以增强神经接口的兼容性。然而,由于界面结合不可靠,水凝胶与刚性/脱水电子微结构的集成具有挑战性,而水凝胶与微机械制造过程所需的大多数条件不兼容。在此,我们提出了一种新的酶介导转移印刷工艺来设计一种粘性生物水凝胶神经接口。供体基板通过对含有各种导电纳米颗粒(NP)的甲基丙烯酰化明胶(GelMA)进行光交联制备,这些导电纳米颗粒包括银纳米线(NW)、铂纳米线和聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS),以形成一种可拉伸的导电生物电极,称为NP掺杂GelMA。另一方面,由掺入微生物转谷氨酰胺酶的明胶(mTG-Gln)组成的受体基板能够同时实现时间控制的凝胶化和共价键增强的粘附,以实现预制的NP掺杂GelMA特征的一步转移印刷。集成的水凝胶微电极阵列(MEA)具有粘性,在机械/结构上具有生物相容性且导电性稳定。该器件在潮湿环境中结构稳定,以支持神经元细胞的生长。尽管在水凝胶中引入银纳米线和PEDOT:PSS纳米颗粒需要进一步研究以避免细胞毒性,但铂纳米线掺杂的GelMA表现出相当的活细胞密度。这种基于谷氨酰胺的MEA有望成为下一代生物活性神经接口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验