Suppr超能文献

使用迁移学习的可扩展石墨烯缺陷预测

Scalable Graphene Defect Prediction Using Transferable Learning.

作者信息

Zheng Bowen, Zheng Zeyu, Gu Grace X

机构信息

Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.

Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720, USA.

出版信息

Nanomaterials (Basel). 2021 Sep 9;11(9):2341. doi: 10.3390/nano11092341.

Abstract

Notably known for its extraordinary thermal and mechanical properties, graphene is a favorable building block in various cutting-edge technologies such as flexible electronics and supercapacitors. However, the almost inevitable existence of defects severely compromises the properties of graphene, and defect prediction is a difficult, yet important, task. Emerging machine learning approaches offer opportunities to predict target properties such as defect distribution by exploiting readily available data, without incurring much experimental cost. Most previous machine learning techniques require the size of training data and predicted material systems of interest to be identical. This limits their broader application, because in practice a newly encountered material system may have a different size compared with the previously observed ones. In this paper, we develop a transferable learning approach for graphene defect prediction, which can be used on graphene with various sizes or shapes not seen in the training data. The proposed approach employs logistic regression and utilizes data on local vibrational energy distributions of small graphene from molecular dynamics simulations, in the hopes that vibrational energy distributions can reflect local structural anomalies. The results show that our machine learning model, trained only with data on smaller graphene, can achieve up to 80% prediction accuracy of defects in larger graphene under different practical metrics. The present research sheds light on scalable graphene defect prediction and opens doors for data-driven defect detection for a broad range of two-dimensional materials.

摘要

石墨烯以其非凡的热学和力学性能而闻名,是诸如柔性电子学和超级电容器等各种前沿技术中理想的构建材料。然而,几乎不可避免存在的缺陷严重损害了石墨烯的性能,而缺陷预测是一项困难但重要的任务。新兴的机器学习方法提供了通过利用现成数据来预测诸如缺陷分布等目标属性的机会,而无需承担太多实验成本。大多数先前的机器学习技术要求训练数据的大小与感兴趣的预测材料系统的大小相同。这限制了它们的更广泛应用,因为在实际中,新遇到的材料系统可能与先前观察到的材料系统具有不同的大小。在本文中,我们开发了一种用于石墨烯缺陷预测的可转移学习方法,该方法可用于具有训练数据中未出现的各种尺寸或形状的石墨烯。所提出的方法采用逻辑回归,并利用来自分子动力学模拟的小尺寸石墨烯的局部振动能量分布数据,希望振动能量分布能够反映局部结构异常。结果表明,我们仅用较小尺寸石墨烯的数据训练的机器学习模型,在不同的实际指标下,能够对较大尺寸石墨烯中的缺陷实现高达80%的预测准确率。本研究为可扩展的石墨烯缺陷预测提供了思路,并为广泛的二维材料的数据驱动缺陷检测打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7894/8472110/bf69d9118838/nanomaterials-11-02341-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验