Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.
Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland.
Nat Biotechnol. 2022 Feb;40(2):198-208. doi: 10.1038/s41587-021-01019-x. Epub 2021 Sep 27.
Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone-phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice.
光电子系统可以对未束缚动物大脑中的靶向神经元和通路进行精确控制,但类似的脊髓技术尚未得到很好的建立。在本研究中,我们描述了一种用于在未束缚的小鼠整个背腹脊髓中对靶向神经元和通路进行超快速、无线、闭环操作的系统。我们开发了一种柔软的可拉伸载体,集成了微尺度发光二极管(micro-LED),该载体与脊髓的硬脑膜相贴合。micro-LED 上的硅酮-磷基质涂层提供了机械保护和光转换,以兼容大量的 opsin。一个重量轻、头戴式、无线平台为 micro-LED 供电,并对感测到的生理信号进行低延迟的片上处理,以在闭环中控制光刺激。我们使用该设备来揭示各种神经元亚型、感觉通路和脊髓上投射在健康和脊髓损伤小鼠运动控制中的作用。