School of Mechanical Engineering, Southeast University, Nanjing, China.
Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Int J Numer Method Biomed Eng. 2022 Jan;38(1):e3533. doi: 10.1002/cnm.3533. Epub 2021 Oct 11.
Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.
精准的模型个性化是将心血管物理模型应用于临床的关键步骤。在本研究中,我们提出使用深度学习(DL)解决心血管血流动力学中的参数估计问题。基于卷积神经网络(CNN)和全连接神经网络(FCNN),我们开发了一个多输入深度神经网络(DNN)模型,用于映射测量值和待估计参数之间的非线性关系。在该模型中,设计了两个独立的网络结构,分别提取两种测量数据(压力波形和心率(HR)和脉搏传输时间(PTT)组成的向量)的特征,以及一个共享结构,用于提取它们对参数的综合依赖关系。此外,我们尝试使用迁移学习(TL)技术进一步加强训练良好网络的个性化特征。为了评估所提出的方法,我们分别使用合成数据和体外数据进行参数估计,并且在使用合成数据进行测试时,我们通过两个具有不同特征的个体评估了 TL 算法的性能。一系列的估计结果表明,估计参数与真实值吻合良好。此外,还发现通过多周期组合策略可以显著提高估计精度。因此,我们认为该方法具有在心血管血流动力学中进行参数估计的潜力,可以提供即时、准确和可持续的个性化过程,值得未来进一步关注。