Suppr超能文献

深度神经网络与注意力机制的结合增强了蛋白质接触预测的可解释性。

Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction.

机构信息

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA.

出版信息

Proteins. 2021 Jun;89(6):697-707. doi: 10.1002/prot.26052. Epub 2021 Feb 16.

Abstract

Deep learning has emerged as a revolutionary technology for protein residue-residue contact prediction since the 2012 CASP10 competition. Considerable advancements in the predictive power of the deep learning-based contact predictions have been achieved since then. However, little effort has been put into interpreting the black-box deep learning methods. Algorithms that can interpret the relationship between predicted contact maps and the internal mechanism of the deep learning architectures are needed to explore the essential components of contact inference and improve their explainability. In this study, we present an attention-based convolutional neural network for protein contact prediction, which consists of two attention mechanism-based modules: sequence attention and regional attention. Our benchmark results on the CASP13 free-modeling targets demonstrate that the two attention modules added on top of existing typical deep learning models exhibit a complementary effect that contributes to prediction improvements. More importantly, the inclusion of the attention mechanism provides interpretable patterns that contain useful insights into the key fold-determining residues in proteins. We expect the attention-based model can provide a reliable and practically interpretable technique that helps break the current bottlenecks in explaining deep neural networks for contact prediction. The source code of our method is available at https://github.com/jianlin-cheng/InterpretContactMap.

摘要

深度学习自 2012 年 CASP10 竞赛以来,已成为蛋白质残基残基接触预测的一项革命性技术。自那时以来,基于深度学习的接触预测的预测能力取得了相当大的进展。然而,很少有人努力解释黑盒深度学习方法。需要能够解释预测接触图与深度学习架构内部机制之间关系的算法,以探索接触推断的基本组成部分并提高其可解释性。在这项研究中,我们提出了一种基于注意力的卷积神经网络,用于蛋白质接触预测,它由两个基于注意力机制的模块组成:序列注意力和区域注意力。我们在 CASP13 自由建模目标上的基准结果表明,添加到现有典型深度学习模型之上的两个注意力模块具有互补作用,有助于提高预测性能。更重要的是,注意力机制的包含提供了可解释的模式,包含了有关蛋白质中关键折叠决定残基的有用见解。我们希望基于注意力的模型可以提供一种可靠且具有实际可解释性的技术,有助于打破目前在解释用于接触预测的深度神经网络方面的瓶颈。我们的方法的源代码可在 https://github.com/jianlin-cheng/InterpretContactMap 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a9/8248402/39dbb110ee2a/PROT-89-697-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验