Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.
Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
Nat Commun. 2019 Sep 2;10(1):3918. doi: 10.1038/s41467-019-11896-1.
Polyketides produced by modular type I polyketide synthases (PKSs) play eminent roles in the development of medicines. Yet, the production of structural analogs by genetic engineering poses a major challenge. We report an evolution-guided morphing of modular PKSs inspired by recombination processes that lead to structural diversity in nature. By deletion and insertion of PKS modules we interconvert the assembly lines for related antibiotic and antifungal agents, aureothin (aur) and neoaureothin (nor) (aka spectinabilin), in both directions. Mutational and functional analyses of the polyketide-tailoring cytochrome P450 monooxygenases, and PKS phylogenies give contradictory clues on potential evolutionary scenarios (generalist-to-specialist enzyme evolution vs. most parsimonious ancestor). The KS-AT linker proves to be well suited as fusion site for both excision and insertion of modules, which supports a model for alternative module boundaries in some PKS systems. This study teaches important lessons on the evolution of PKSs, which may guide future engineering approaches.
由模块化 I 型聚酮合酶(PKS)产生的聚酮化合物在药物开发中发挥着重要作用。然而,通过基因工程生产结构类似物是一个重大挑战。我们报告了一种受自然重组过程启发的模块化 PKS 的进化引导变形,这些过程导致了结构多样性。通过删除和插入 PKS 模块,我们可以在两个方向上相互转换相关抗生素和抗真菌剂 aureothin (aur) 和 neoaureothin (nor)(又名 spectinabilin)的组装线。对聚酮修饰细胞色素 P450 单加氧酶的突变和功能分析以及 PKS 系统发育提供了关于潜在进化情景的相互矛盾的线索(通用酶到特化酶的进化与最简约祖先)。KS-AT 接头被证明非常适合作为模块切除和插入的融合位点,这支持了一些 PKS 系统中替代模块边界的模型。这项研究为 PKS 的进化提供了重要的教训,这可能为未来的工程方法提供指导。