Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
J Biol Chem. 2021 Nov;297(5):101256. doi: 10.1016/j.jbc.2021.101256. Epub 2021 Sep 28.
Owing to their ability to break glycosidic bonds in recalcitrant crystalline polysaccharides such as cellulose, the catalysis effected by lytic polysaccharide monooxygenases (LPMOs) is of major interest. Kinetics of these reductant-dependent, monocopper enzymes is complicated by the insoluble nature of the cellulose substrate and parallel, enzyme-dependent, and enzyme-independent side reactions between the reductant and oxygen-containing cosubstrates. Here, we provide kinetic characterization of cellulose peroxygenase (oxidative cleavage of glycosidic bonds in cellulose) and reductant peroxidase (oxidation of the reductant) activities of the LPMO TrAA9A of the cellulose-degrading model fungus Trichoderma reesei. The catalytic efficiency [Formula: see text] of the cellulose peroxygenase reaction (k = 8.5 s, and [Formula: see text] ) was an order of magnitude higher than that of the reductant (ascorbic acid) peroxidase reaction. The turnover of HO in the ascorbic acid peroxidase reaction followed the ping-pong mechanism and led to irreversible inactivation of the enzyme with a probability of 0.0072. Using theoretical analysis, we suggest a relationship between the half-life of LPMO, the values of kinetic parameters, and the concentrations of the reactants.
由于它们能够打断纤维素等顽固结晶多糖中的糖苷键,因此溶菌多糖单加氧酶(LPMO)的催化作用引起了广泛关注。这些依赖还原剂的单铜酶的动力学较为复杂,原因是纤维素底物不溶,以及还原剂和含氧共底物之间存在平行的、依赖酶的和非依赖酶的副反应。本文对纤维素过氧化物酶(纤维素糖苷键的氧化裂解)和还原酶过氧化物酶(还原剂的氧化)活性进行了动力学表征,该酶是纤维素降解模型真菌里氏木霉的 LPMO TrAA9A。纤维素过氧化物酶反应的催化效率[Formula: see text](k = 8.5 s,[Formula: see text])比还原剂(抗坏血酸)过氧化物酶反应高一个数量级。抗坏血酸过氧化物酶反应中 HO 的周转率遵循乒乓机制,导致酶的不可逆失活,概率为 0.0072。通过理论分析,我们提出了 LPMO 的半衰期、动力学参数值与反应物浓度之间的关系。