Suppr超能文献

乳腺癌分类取决于动态勺状喉优化算法。

Breast Cancer Classification Depends on the Dynamic Dipper Throated Optimization Algorithm.

作者信息

Alhussan Amel Ali, Eid Marwa M, Towfek S K, Khafaga Doaa Sami

机构信息

Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35712, Egypt.

出版信息

Biomimetics (Basel). 2023 Apr 17;8(2):163. doi: 10.3390/biomimetics8020163.

Abstract

According to the American Cancer Society, breast cancer is the second largest cause of mortality among women after lung cancer. Women's death rates can be decreased if breast cancer is diagnosed and treated early. Due to the lengthy duration of manual breast cancer diagnosis, an automated approach is necessary for early cancer identification. This research proposes a novel framework integrating metaheuristic optimization with deep learning and feature selection for robustly classifying breast cancer from ultrasound images. The structure of the proposed methodology consists of five stages, namely, data augmentation to improve the learning of convolutional neural network (CNN) models, transfer learning using GoogleNet deep network for feature extraction, selection of the best set of features using a novel optimization algorithm based on a hybrid of dipper throated and particle swarm optimization algorithms, and classification of the selected features using CNN optimized using the proposed optimization algorithm. To prove the effectiveness of the proposed approach, a set of experiments were conducted on a breast cancer dataset, freely available on Kaggle, to evaluate the performance of the proposed feature selection method and the performance of the optimized CNN. In addition, statistical tests were established to study the stability and difference of the proposed approach compared to state-of-the-art approaches. The achieved results confirmed the superiority of the proposed approach with a classification accuracy of 98.1%, which is better than the other approaches considered in the conducted experiments.

摘要

根据美国癌症协会的数据,乳腺癌是女性中仅次于肺癌的第二大死因。如果乳腺癌能够早期诊断和治疗,女性的死亡率可以降低。由于人工诊断乳腺癌的时间较长,因此需要一种自动化方法来早期识别癌症。本研究提出了一种新颖的框架,将元启发式优化与深度学习和特征选择相结合,以从超声图像中稳健地分类乳腺癌。所提出方法的结构包括五个阶段,即数据增强以改进卷积神经网络(CNN)模型的学习、使用谷歌网络深度网络进行迁移学习以进行特征提取、使用基于双喉和粒子群优化算法混合的新颖优化算法选择最佳特征集,以及使用所提出的优化算法优化的CNN对所选特征进行分类。为了证明所提出方法的有效性,在Kaggle上免费提供的乳腺癌数据集上进行了一组实验,以评估所提出的特征选择方法的性能和优化后的CNN的性能。此外,还建立了统计测试来研究所提出方法与现有方法相比的稳定性和差异。所取得的结果证实了所提出方法的优越性,分类准确率达到98.1%,优于所进行实验中考虑的其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f6c/10123690/7c07e3ec7c35/biomimetics-08-00163-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验