Suppr超能文献

放射科医生可以通过观察胸部 X 光片的整体情况,与深度学习网络相媲美,来直观地预测死亡率风险。

Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network.

机构信息

Artificial Intelligence in Medicine (AIM) Program, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine (HIM), Suite 343, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.

Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Charles River Plaza, 165 Cambridge Street, Boston, MA, 02114, USA.

出版信息

Sci Rep. 2021 Oct 1;11(1):19586. doi: 10.1038/s41598-021-99107-0.

Abstract

Deep learning convolutional neural network (CNN) can predict mortality from chest radiographs, yet, it is unknown whether radiologists can perform the same task. Here, we investigate whether radiologists can visually assess image gestalt (defined as deviation from an unremarkable chest radiograph associated with the likelihood of 6-year mortality) of a chest radiograph to predict 6-year mortality. The assessment was validated in an independent testing dataset and compared to the performance of a CNN developed for mortality prediction. Results are reported for the testing dataset only (n = 100; age 62.5 ± 5.2; male 55%, event rate 50%). The probability of 6-year mortality based on image gestalt had high accuracy (AUC: 0.68 (95% CI 0.58-0.78), similar to that of the CNN (AUC: 0.67 (95% CI 0.57-0.77); p = 0.90). Patients with high/very high image gestalt ratings were significantly more likely to die when compared to those rated as very low (p ≤ 0.04). Assignment to risk categories was not explained by patient characteristics or traditional risk factors and imaging findings (p ≥ 0.2). In conclusion, assessing image gestalt on chest radiographs by radiologists renders high prognostic accuracy for the probability of mortality, similar to that of a specifically trained CNN. Further studies are warranted to confirm this concept and to determine potential clinical benefits.

摘要

深度学习卷积神经网络 (CNN) 可以预测胸部 X 光片的死亡率,但目前尚不清楚放射科医生是否能够执行相同的任务。在这里,我们研究放射科医生是否可以通过视觉评估胸部 X 光片的图像整体情况(定义为与 6 年死亡率相关的无明显异常胸部 X 光片的偏差)来预测 6 年死亡率。该评估在独立测试数据集进行了验证,并与专门用于死亡率预测的 CNN 的性能进行了比较。仅报告测试数据集的结果(n = 100;年龄 62.5 ± 5.2;男性 55%,事件发生率 50%)。基于图像整体情况的 6 年死亡率预测具有很高的准确性(AUC:0.68(95%CI 0.58-0.78),与 CNN 相似(AUC:0.67(95%CI 0.57-0.77);p = 0.90)。与评为非常低的患者相比,评为高/非常高图像整体情况的患者死亡的可能性显著更高(p ≤ 0.04)。风险类别分配不能通过患者特征或传统风险因素和影像学发现来解释(p ≥ 0.2)。总之,放射科医生对胸部 X 光片进行图像整体评估可高度准确地预测死亡率的概率,与专门训练的 CNN 相似。需要进一步的研究来证实这一概念,并确定潜在的临床益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dca/8486799/a93af0fb5aa8/41598_2021_99107_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验