Suppr超能文献

深度学习评估胸部 X 光片的长期死亡率。

Deep Learning to Assess Long-term Mortality From Chest Radiographs.

机构信息

Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston.

School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany.

出版信息

JAMA Netw Open. 2019 Jul 3;2(7):e197416. doi: 10.1001/jamanetworkopen.2019.7416.

Abstract

IMPORTANCE

Chest radiography is the most common diagnostic imaging test in medicine and may also provide information about longevity and prognosis.

OBJECTIVE

To develop and test a convolutional neural network (CNN) (named CXR-risk) to predict long-term mortality, including noncancer death, from chest radiographs.

DESIGN, SETTING, AND PARTICIPANTS: In this prognostic study, CXR-risk CNN development (n = 41 856) and testing (n = 10 464) used data from the screening radiography arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) (n = 52 320), a community cohort of asymptomatic nonsmokers and smokers (aged 55-74 years) enrolled at 10 US sites from November 8, 1993, through July 2, 2001. External testing used data from the screening radiography arm of the National Lung Screening Trial (NLST) (n = 5493), a community cohort of heavy smokers (aged 55-74 years) enrolled at 21 US sites from August 2002, through April 2004. Data analysis was performed from January 1, 2018, to May 23, 2019.

EXPOSURE

Deep learning CXR-risk score (very low, low, moderate, high, and very high) based on CNN analysis of the enrollment radiograph.

MAIN OUTCOMES AND MEASURES

All-cause mortality. Prognostic value was assessed in the context of radiologists' diagnostic findings (eg, lung nodule) and standard risk factors (eg, age, sex, and diabetes) and for cause-specific mortality.

RESULTS

Among 10 464 PLCO participants (mean [SD] age, 62.4 [5.4] years; 5405 men [51.6%]; median follow-up, 12.2 years [interquartile range, 10.5-12.9 years]) and 5493 NLST test participants (mean [SD] age, 61.7 [5.0] years; 3037 men [55.3%]; median follow-up, 6.3 years [interquartile range, 6.0-6.7 years]), there was a graded association between CXR-risk score and mortality. The very high-risk group had mortality of 53.0% (PLCO) and 33.9% (NLST), which was higher compared with the very low-risk group (PLCO: unadjusted hazard ratio [HR], 18.3 [95% CI, 14.5-23.2]; NLST: unadjusted HR, 15.2 [95% CI, 9.2-25.3]; both P < .001). This association was robust to adjustment for radiologists' findings and risk factors (PLCO: adjusted HR [aHR], 4.8 [95% CI, 3.6-6.4]; NLST: aHR, 7.0 [95% CI, 4.0-12.1]; both P < .001). Comparable results were seen for lung cancer death (PLCO: aHR, 11.1 [95% CI, 4.4-27.8]; NLST: aHR, 8.4 [95% CI, 2.5-28.0]; both P ≤ .001) and for noncancer cardiovascular death (PLCO: aHR, 3.6 [95% CI, 2.1-6.2]; NLST: aHR, 47.8 [95% CI, 6.1-374.9]; both P < .001) and respiratory death (PLCO: aHR, 27.5 [95% CI, 7.7-97.8]; NLST: aHR, 31.9 [95% CI, 3.9-263.5]; both P ≤ .001).

CONCLUSIONS AND RELEVANCE

In this study, the deep learning CXR-risk score stratified the risk of long-term mortality based on a single chest radiograph. Individuals at high risk of mortality may benefit from prevention, screening, and lifestyle interventions.

摘要

重要性

胸部 X 射线摄影是医学中最常见的诊断影像学检查,也可能提供关于寿命和预后的信息。

目的

开发和测试卷积神经网络(CNN)(命名为 CXR-risk),以预测来自胸部 X 射线的长期死亡率,包括非癌症死亡。

设计、地点和参与者:在这项预后研究中,CXR-risk CNN 的开发(n=41856)和测试(n=10464)使用了前列腺癌、肺癌、结直肠癌和卵巢癌筛查试验(PLCO)筛查射线臂的数据(n=52320),这是一个由美国 10 个地点的无症状不吸烟者和吸烟者(年龄在 55-74 岁之间)组成的社区队列,登记时间为 1993 年 11 月 8 日至 2001 年 7 月 2 日。外部测试使用了来自国家肺癌筛查试验(NLST)筛查射线臂的数据(n=5493),这是一个由美国 21 个地点的重度吸烟者(年龄在 55-74 岁之间)组成的社区队列,登记时间为 2002 年 8 月至 2004 年 4 月。数据分析于 2018 年 1 月 1 日至 2019 年 5 月 23 日进行。

暴露

基于 CNN 对入组射线照片的分析,深度学习 CXR-risk 评分(极低、低、中、高和极高)。

主要结果和测量

全因死亡率。在放射科医生的诊断结果(例如,肺结节)和标准风险因素(例如,年龄、性别和糖尿病)以及特定原因死亡率的背景下评估了预后价值。

结果

在 10464 名 PLCO 参与者(平均[标准差]年龄,62.4[5.4]岁;5405 名男性[51.6%];中位随访时间,12.2 年[四分位距,10.5-12.9 年])和 5493 名 NLST 测试参与者(平均[标准差]年龄,61.7[5.0]岁;3037 名男性[55.3%];中位随访时间,6.3 年[四分位距,6.0-6.7 年])中,CXR-risk 评分与死亡率之间存在分级关联。极高风险组的死亡率为 53.0%(PLCO)和 33.9%(NLST),与极低风险组相比更高(PLCO:未调整的危险比[HR],18.3[95%CI,14.5-23.2];NLST:未调整 HR,15.2[95%CI,9.2-25.3];均 P<0.001)。这种关联在调整放射科医生的发现和风险因素后仍然存在(PLCO:调整后的 HR[aHR],4.8[95%CI,3.6-6.4];NLST:aHR,7.0[95%CI,4.0-12.1];均 P<0.001)。在肺癌死亡(PLCO:aHR,11.1[95%CI,4.4-27.8];NLST:aHR,8.4[95%CI,2.5-28.0];均 P<0.001)和非癌症心血管死亡(PLCO:aHR,3.6[95%CI,2.1-6.2];NLST:aHR,47.8[95%CI,6.1-374.9];均 P<0.001)和呼吸死亡(PLCO:aHR,27.5[95%CI,7.7-97.8];NLST:aHR,31.9[95%CI,3.9-263.5];均 P≤0.001)方面也观察到了类似的结果。

结论和相关性

在这项研究中,深度学习 CXR-risk 评分根据单次胸部 X 射线对长期死亡率进行分层。高死亡率风险的个体可能受益于预防、筛查和生活方式干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4dd/6646994/0154d59a32cc/jamanetwopen-2-e197416-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验