Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston.
School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany.
JAMA Netw Open. 2019 Jul 3;2(7):e197416. doi: 10.1001/jamanetworkopen.2019.7416.
Chest radiography is the most common diagnostic imaging test in medicine and may also provide information about longevity and prognosis.
To develop and test a convolutional neural network (CNN) (named CXR-risk) to predict long-term mortality, including noncancer death, from chest radiographs.
DESIGN, SETTING, AND PARTICIPANTS: In this prognostic study, CXR-risk CNN development (n = 41 856) and testing (n = 10 464) used data from the screening radiography arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) (n = 52 320), a community cohort of asymptomatic nonsmokers and smokers (aged 55-74 years) enrolled at 10 US sites from November 8, 1993, through July 2, 2001. External testing used data from the screening radiography arm of the National Lung Screening Trial (NLST) (n = 5493), a community cohort of heavy smokers (aged 55-74 years) enrolled at 21 US sites from August 2002, through April 2004. Data analysis was performed from January 1, 2018, to May 23, 2019.
Deep learning CXR-risk score (very low, low, moderate, high, and very high) based on CNN analysis of the enrollment radiograph.
All-cause mortality. Prognostic value was assessed in the context of radiologists' diagnostic findings (eg, lung nodule) and standard risk factors (eg, age, sex, and diabetes) and for cause-specific mortality.
Among 10 464 PLCO participants (mean [SD] age, 62.4 [5.4] years; 5405 men [51.6%]; median follow-up, 12.2 years [interquartile range, 10.5-12.9 years]) and 5493 NLST test participants (mean [SD] age, 61.7 [5.0] years; 3037 men [55.3%]; median follow-up, 6.3 years [interquartile range, 6.0-6.7 years]), there was a graded association between CXR-risk score and mortality. The very high-risk group had mortality of 53.0% (PLCO) and 33.9% (NLST), which was higher compared with the very low-risk group (PLCO: unadjusted hazard ratio [HR], 18.3 [95% CI, 14.5-23.2]; NLST: unadjusted HR, 15.2 [95% CI, 9.2-25.3]; both P < .001). This association was robust to adjustment for radiologists' findings and risk factors (PLCO: adjusted HR [aHR], 4.8 [95% CI, 3.6-6.4]; NLST: aHR, 7.0 [95% CI, 4.0-12.1]; both P < .001). Comparable results were seen for lung cancer death (PLCO: aHR, 11.1 [95% CI, 4.4-27.8]; NLST: aHR, 8.4 [95% CI, 2.5-28.0]; both P ≤ .001) and for noncancer cardiovascular death (PLCO: aHR, 3.6 [95% CI, 2.1-6.2]; NLST: aHR, 47.8 [95% CI, 6.1-374.9]; both P < .001) and respiratory death (PLCO: aHR, 27.5 [95% CI, 7.7-97.8]; NLST: aHR, 31.9 [95% CI, 3.9-263.5]; both P ≤ .001).
In this study, the deep learning CXR-risk score stratified the risk of long-term mortality based on a single chest radiograph. Individuals at high risk of mortality may benefit from prevention, screening, and lifestyle interventions.
胸部 X 射线摄影是医学中最常见的诊断影像学检查,也可能提供关于寿命和预后的信息。
开发和测试卷积神经网络(CNN)(命名为 CXR-risk),以预测来自胸部 X 射线的长期死亡率,包括非癌症死亡。
设计、地点和参与者:在这项预后研究中,CXR-risk CNN 的开发(n=41856)和测试(n=10464)使用了前列腺癌、肺癌、结直肠癌和卵巢癌筛查试验(PLCO)筛查射线臂的数据(n=52320),这是一个由美国 10 个地点的无症状不吸烟者和吸烟者(年龄在 55-74 岁之间)组成的社区队列,登记时间为 1993 年 11 月 8 日至 2001 年 7 月 2 日。外部测试使用了来自国家肺癌筛查试验(NLST)筛查射线臂的数据(n=5493),这是一个由美国 21 个地点的重度吸烟者(年龄在 55-74 岁之间)组成的社区队列,登记时间为 2002 年 8 月至 2004 年 4 月。数据分析于 2018 年 1 月 1 日至 2019 年 5 月 23 日进行。
基于 CNN 对入组射线照片的分析,深度学习 CXR-risk 评分(极低、低、中、高和极高)。
全因死亡率。在放射科医生的诊断结果(例如,肺结节)和标准风险因素(例如,年龄、性别和糖尿病)以及特定原因死亡率的背景下评估了预后价值。
在 10464 名 PLCO 参与者(平均[标准差]年龄,62.4[5.4]岁;5405 名男性[51.6%];中位随访时间,12.2 年[四分位距,10.5-12.9 年])和 5493 名 NLST 测试参与者(平均[标准差]年龄,61.7[5.0]岁;3037 名男性[55.3%];中位随访时间,6.3 年[四分位距,6.0-6.7 年])中,CXR-risk 评分与死亡率之间存在分级关联。极高风险组的死亡率为 53.0%(PLCO)和 33.9%(NLST),与极低风险组相比更高(PLCO:未调整的危险比[HR],18.3[95%CI,14.5-23.2];NLST:未调整 HR,15.2[95%CI,9.2-25.3];均 P<0.001)。这种关联在调整放射科医生的发现和风险因素后仍然存在(PLCO:调整后的 HR[aHR],4.8[95%CI,3.6-6.4];NLST:aHR,7.0[95%CI,4.0-12.1];均 P<0.001)。在肺癌死亡(PLCO:aHR,11.1[95%CI,4.4-27.8];NLST:aHR,8.4[95%CI,2.5-28.0];均 P<0.001)和非癌症心血管死亡(PLCO:aHR,3.6[95%CI,2.1-6.2];NLST:aHR,47.8[95%CI,6.1-374.9];均 P<0.001)和呼吸死亡(PLCO:aHR,27.5[95%CI,7.7-97.8];NLST:aHR,31.9[95%CI,3.9-263.5];均 P≤0.001)方面也观察到了类似的结果。
在这项研究中,深度学习 CXR-risk 评分根据单次胸部 X 射线对长期死亡率进行分层。高死亡率风险的个体可能受益于预防、筛查和生活方式干预。