Suppr超能文献

从事件相关脑电位中识别食物/非食物视觉刺激

Identification of Food/Nonfood Visual Stimuli from Event-Related Brain Potentials.

作者信息

Güney Selen, Arslan Sema, Duru Adil Deniz, Göksel Duru Dilek

机构信息

Marmara University, Institute of Health Sciences, Istanbul, Turkey.

Marmara University, Sports Science Faculty, Istanbul, Turkey.

出版信息

Appl Bionics Biomech. 2021 Sep 23;2021:6472586. doi: 10.1155/2021/6472586. eCollection 2021.

Abstract

Although food consumption is one of the most basic human behaviors, the factors underlying nutritional preferences are not yet clear. The use of classification algorithms can clarify the understanding of these factors. This study was aimed at measuring electrophysiological responses to food/nonfood stimuli and applying classification techniques to discriminate the responses using a single-sweep dataset. Twenty-one right-handed male athletes with body mass index (BMI) levels between 18.5% and 25% (mean age: 21.05 ± 2.5) participated in this study voluntarily. The participants were asked to focus on the food and nonfood images that were randomly presented on the monitor without performing any motor task, and EEG data have been collected using a 16-channel amplifier with a sampling rate of 1024 Hz. The SensoMotoric Instruments (SMI) iView XTM RED eye tracking technology was used simultaneously with the EEG to measure the participants' attention to the presented stimuli. Three datasets were generated using the amplitude, time-frequency decomposition, and time-frequency connectivity metrics of P300 and LPP components to separate food and nonfood stimuli. We have implemented -nearest neighbor (kNN), support vector machine (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Bayesian classifier, decision tree (DT), and Multilayer Perceptron (MLP) classifiers on these datasets. Finally, the response to food-related stimuli in the hunger state is discriminated from nonfood with an accuracy value close to 78% for each dataset. The results obtained in this study motivate us to employ classifier algorithms using the features obtained from single-trial measurements in amplitude and time-frequency space instead of applying more complex ones like connectivity metrics.

摘要

尽管食物消费是人类最基本的行为之一,但营养偏好背后的因素尚不清楚。使用分类算法可以阐明对这些因素的理解。本研究旨在测量对食物/非食物刺激的电生理反应,并应用分类技术使用单次扫描数据集来区分这些反应。21名右利手男性运动员参与了本研究,他们的体重指数(BMI)在18.5%至25%之间(平均年龄:21.05±2.5),均为自愿参加。参与者被要求专注于在显示器上随机呈现的食物和非食物图像,不执行任何运动任务,并使用采样率为1024Hz的16通道放大器收集脑电图(EEG)数据。同时使用SensoMotoric Instruments(SMI)iView XTM RED眼动追踪技术与脑电图来测量参与者对所呈现刺激的注意力。使用P300和LPP成分的幅度、时频分解和时频连通性指标生成了三个数据集,以区分食物和非食物刺激。我们在这些数据集上实现了k近邻(kNN)、支持向量机(SVM)、线性判别分析(LDA)、逻辑回归(LR)、贝叶斯分类器、决策树(DT)和多层感知器(MLP)分类器。最后,在饥饿状态下对与食物相关刺激的反应与非食物刺激得以区分,每个数据集的准确率接近78%。本研究获得的结果促使我们使用从幅度和时频空间的单次测量中获得的特征来采用分类器算法,而不是应用像连通性指标这样更复杂的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7991/8486549/9bb71b660f77/ABB2021-6472586.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验