Suppr超能文献

佛罗里达州布劳沃德县和迈阿密-戴德县新冠病毒感染率与健康的社会决定因素之间的关系

The Relationship Between COVID-19 Infection Rates and Social Determinants of Health in Broward and Miami-Dade Counties, Florida.

作者信息

Taylor Lindsey A, Sheehan Jarrod, Paz Ariel, Tromer Monica, Pieper Erica, Squires Iman, Nuhuman Aysha, Santos Radleigh, Jacobs Robin J

机构信息

Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA.

Statistics, Nova Southeastern University, Fort Lauderdale, USA.

出版信息

Cureus. 2021 Aug 28;13(8):e17524. doi: 10.7759/cureus.17524. eCollection 2021 Aug.

Abstract

Objective To determine the relationship between per capita income and COVID-19 cases in Broward and Miami-Dade Counties of Florida, USA.  Background Low socioeconomic status predisposes individuals to worse health outcomes. For example, during the 2003 SARS-CoV pandemic and the 2009 H1N1 influenza pandemic disadvantaged individuals were more likely to become infected. More recently, a study found that deaths due to COVID-19 were associated with disadvantaged areas across the United States. South Florida, in particular Broward and Miami-Dade Counties, has experienced a significant burden of coronavirus cases. Investigating the association of income on coronavirus cases in Broward and Miami-Dade Counties may aid in identifying and treating those individuals at increased risk.  Methods This retrospective cross-sectional study used data gathered by the Florida Department of Health and 2018 U.S. Census. COVID-19 cases from March 2 - November 1, 2020 were tallied by ZIP code in Florida's Broward and Miami-Dade Counties and scaled per housing unit. An exhaustive regression analysis using County "Miami-Dade" or "Broward," sex, race, ethnicity, median age, and estimated per capita income was performed for each combination of independent variables in MATLAB (MathWorks, Natick, USA). Regression models were evaluated using both adjusted R-squared and the Akaike Information Criterion, along with the number of significant predictors. The most optimal model with the highest number of significant predictors was selected. Results Among all other variables, sex, race, and ethnicity as the variables that best predicted COVID-19 cases per housing unit within a certain ZIP code. The adjusted R-squared of this optimal model was 0.5062, indicating that within each ZIP code in Broward and Miami-Dade Counties 50.62% of the variance in COVID-19 cases per housing unit can be explained by these variables. A significant relationship was found between the number of COVID-19 cases and individuals who were Black or African American ( < 0.001), individuals who were Hispanic or Latino ( < 0.001), and male to female ratio ( = 0.016). Per capita income, age, and county were not statistically significant predictors in any model tested. Conclusions Racial and gender disparities may be more significant contributors to COVID-19 cases than per capita income in housing units. Based on the results of this study, investigators may consider applying this model to similar variables in order to inform the management and prevention of cases in the present and future pandemics.

摘要

目的 确定美国佛罗里达州布劳沃德县和迈阿密-戴德县人均收入与新冠病毒疾病(COVID-19)病例之间的关系。背景 社会经济地位低下使个体更容易出现更差的健康结果。例如,在2003年严重急性呼吸综合征冠状病毒(SARS-CoV)大流行和2009年甲型H1N1流感大流行期间,弱势群体更容易受到感染。最近,一项研究发现,美国各地弱势群体所在地区的COVID-19死亡病例较多。佛罗里达州南部,尤其是布劳沃德县和迈阿密-戴德县,承受了冠状病毒病例的巨大负担。调查布劳沃德县和迈阿密-戴德县收入与冠状病毒病例之间的关联,可能有助于识别和治疗那些风险增加的个体。方法 这项回顾性横断面研究使用了佛罗里达州卫生部收集的数据和2018年美国人口普查数据。统计了2020年3月2日至11月1日佛罗里达州布劳沃德县和迈阿密-戴德县按邮政编码划分的COVID-19病例,并按每个住房单元进行了换算。在MATLAB(美国马萨诸塞州纳蒂克市的MathWorks公司)中,对每个自变量组合进行了详尽的回归分析,自变量包括县名“迈阿密-戴德”或“布劳沃德”、性别、种族、族裔、年龄中位数和估计人均收入。使用调整后的决定系数(R²)、赤池信息准则(AIC)以及显著预测变量的数量对回归模型进行评估。选择具有最多显著预测变量的最优模型。结果 在所有其他变量中,性别、种族和族裔是在特定邮政编码内每个住房单元中最能预测COVID-19病例的变量。这个最优模型的调整后R²为0.5062,这表明在布劳沃德县和迈阿密-戴德县的每个邮政编码内,每个住房单元中COVID-19病例的50.62%的变异可以由这些变量解释。发现COVID-19病例数与黑人或非裔美国人(P<0.001)、西班牙裔或拉丁裔(P<0.001)个体以及男女比例(P = 0.016)之间存在显著关系。在任何测试模型中,人均收入、年龄和所在县均不是统计学上显著的预测变量。结论 在住房单元中,种族和性别差异可能比人均收入对COVID-19病例的影响更大。基于本研究结果,研究人员可能会考虑将此模型应用于类似变量,以便为当前和未来大流行中病例的管理和预防提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a4b/8476047/3f6b3fbdae33/cureus-0013-00000017524-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验