Suppr超能文献

一种用于合成患者生成的笔记以改善远程护理和慢性病管理的自然语言处理管道:囊性纤维化案例研究。

A natural language processing pipeline to synthesize patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study.

作者信息

Hussain Syed-Amad, Sezgin Emre, Krivchenia Katelyn, Luna John, Rust Steve, Huang Yungui

机构信息

IT Research and Innovation, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.

Department of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.

出版信息

JAMIA Open. 2021 Sep 29;4(3):ooab084. doi: 10.1093/jamiaopen/ooab084. eCollection 2021 Jul.

Abstract

OBJECTIVES

Patient-generated health data (PGHD) are important for tracking and monitoring out of clinic health events and supporting shared clinical decisions. Unstructured text as PGHD (eg, medical diary notes and transcriptions) may encapsulate rich information through narratives which can be critical to better understand a patient's condition. We propose a natural language processing (NLP) supported data synthesis pipeline for unstructured PGHD, focusing on children with special healthcare needs (CSHCN), and demonstrate it with a case study on cystic fibrosis (CF).

MATERIALS AND METHODS

The proposed unstructured data synthesis and information extraction pipeline extract a broad range of health information by combining rule-based approaches with pretrained deep-learning models. Particularly, we build upon the scispaCy biomedical model suite, leveraging its named entity recognition capabilities to identify and link clinically relevant entities to established ontologies such as Systematized Nomenclature of Medicine (SNOMED) and RXNORM. We then use scispaCy's syntax (grammar) parsing tools to retrieve phrases associated with the entities in medication, dose, therapies, symptoms, bowel movements, and nutrition ontological categories. The pipeline is illustrated and tested with simulated CF patient notes.

RESULTS

The proposed hybrid deep-learning rule-based approach can operate over a variety of natural language note types and allow customization for a given patient or cohort. Viable information was successfully extracted from simulated CF notes. This hybrid pipeline is robust to misspellings and varied word representations and can be tailored to accommodate the needs of a specific patient, cohort, or clinician.

DISCUSSION

The NLP pipeline can extract predefined or ontology-based entities from free-text PGHD, aiming to facilitate remote care and improve chronic disease management. Our implementation makes use of open source models, allowing for this solution to be easily replicated and integrated in different health systems. Outside of the clinic, the use of the NLP pipeline may increase the amount of clinical data recorded by families of CSHCN and ease the process to identify health events from the notes. Similarly, care coordinators, nurses and clinicians would be able to track adherence with medications, identify symptoms, and effectively intervene to improve clinical care. Furthermore, visualization tools can be applied to digest the structured data produced by the pipeline in support of the decision-making process for a patient, caregiver, or provider.

CONCLUSION

Our study demonstrated that an NLP pipeline can be used to create an automated analysis and reporting mechanism for unstructured PGHD. Further studies are suggested with real-world data to assess pipeline performance and further implications.

摘要

目的

患者生成的健康数据(PGHD)对于跟踪和监测门诊外的健康事件以及支持共同的临床决策非常重要。作为PGHD的非结构化文本(例如医学日记笔记和转录文本)可能通过叙述封装丰富的信息,这对于更好地了解患者病情至关重要。我们提出了一种用于非结构化PGHD的自然语言处理(NLP)支持的数据合成管道,重点关注有特殊医疗需求的儿童(CSHCN),并通过囊性纤维化(CF)的案例研究进行演示。

材料与方法

所提出的非结构化数据合成和信息提取管道通过将基于规则的方法与预训练的深度学习模型相结合,提取广泛的健康信息。特别是,我们基于scispaCy生物医学模型套件进行构建,利用其命名实体识别能力来识别临床相关实体并将其链接到既定的本体,如医学系统命名法(SNOMED)和RXNORM。然后,我们使用scispaCy的句法(语法)解析工具来检索与药物、剂量、治疗、症状、排便和营养本体类别中的实体相关的短语。该管道通过模拟CF患者笔记进行了说明和测试。

结果

所提出的基于深度学习规则的混合方法可以处理各种自然语言笔记类型,并允许针对特定患者或队列进行定制。从模拟CF笔记中成功提取了可行的信息。这种混合管道对拼写错误和不同的单词表示具有鲁棒性,并且可以进行定制以满足特定患者、队列或临床医生的需求。

讨论

NLP管道可以从自由文本PGHD中提取预定义或基于本体的实体,旨在促进远程护理并改善慢性病管理。我们的实现使用了开源模型,使得该解决方案能够轻松复制并集成到不同的卫生系统中。在门诊之外,NLP管道的使用可能会增加CSHCN家庭记录的临床数据量,并简化从笔记中识别健康事件的过程。同样,护理协调员、护士和临床医生将能够跟踪药物依从性、识别症状并有效干预以改善临床护理。此外,可以应用可视化工具来消化管道生成的结构化数据,以支持患者、护理人员或提供者的决策过程。

结论

我们的研究表明,NLP管道可用于为非结构化PGHD创建自动分析和报告机制。建议使用真实世界数据进行进一步研究,以评估管道性能和进一步的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26da/8480545/19cc49e50f9b/ooab084f1.jpg

相似文献

3
Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
Anesth Analg. 2022 Dec 1;135(6):1162-1171. doi: 10.1213/ANE.0000000000006152. Epub 2022 Jul 15.
5
Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review.
JMIR Med Inform. 2019 Apr 27;7(2):e12239. doi: 10.2196/12239.
6
Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
Methods Inf Med. 2020 Dec;59(S 02):e64-e78. doi: 10.1055/s-0040-1716403. Epub 2020 Oct 14.
10
Predicting mortality in critically ill patients with diabetes using machine learning and clinical notes.
BMC Med Inform Decis Mak. 2020 Dec 30;20(Suppl 11):295. doi: 10.1186/s12911-020-01318-4.

本文引用的文献

2
The impact of electronic health record-integrated patient-generated health data on clinician burnout.
J Am Med Inform Assoc. 2021 Apr 23;28(5):1051-1056. doi: 10.1093/jamia/ocab017.
3
Patient-generated health data and electronic health record integration: a scoping review.
JAMIA Open. 2020 Dec 5;3(4):619-627. doi: 10.1093/jamiaopen/ooaa052. eCollection 2020 Dec.
4
Seriously ill pediatric patient, parent, and clinician perspectives on visualizing symptom data.
J Am Med Inform Assoc. 2021 Jul 14;28(7):1518-1525. doi: 10.1093/jamia/ocab037.
9
Medication Safety at Home: A Qualitative Study on Caregivers of Chronically Ill Children in Malaysia.
Hosp Pharm. 2020 Dec;55(6):405-411. doi: 10.1177/0018578719851719. Epub 2019 Jun 6.
10
User-centered design of a longitudinal care plan for children with medical complexity.
J Am Med Inform Assoc. 2020 Dec 9;27(12):1860-1870. doi: 10.1093/jamia/ocaa193.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验