Suppr超能文献

下丘脑的神经解剖组织受空间和拓扑效率驱动。

The neuroanatomical organization of the hypothalamus is driven by spatial and topological efficiency.

作者信息

Smith Nathan R, Ameen Shabeeb, Miller Sierra N, Kasper James M, Schwarz Jennifer M, Hommel Jonathan D, Borzou Ahmad

机构信息

Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States.

Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, United States.

出版信息

Front Syst Neurosci. 2024 Aug 5;18:1417346. doi: 10.3389/fnsys.2024.1417346. eCollection 2024.

Abstract

The hypothalamus in the mammalian brain is responsible for regulating functions associated with survival and reproduction representing a complex set of highly interconnected, yet anatomically and functionally distinct, sub-regions. It remains unclear what factors drive the spatial organization of sub-regions within the hypothalamus. One potential factor may be structural connectivity of the network that promotes efficient function with well-connected sub-regions placed closer together geometrically, i.e., the strongest axonal signal transferred through the shortest geometrical distance. To empirically test for such efficiency, we use hypothalamic data derived from the Allen Mouse Brain Connectivity Atlas, which provides a structural connectivity map of mouse brain regions derived from a series of viral tracing experiments. Using both cost function minimization and comparison with a weighted, sphere-packing ensemble, we demonstrate that the sum of the distances between hypothalamic sub-regions are not close to the minimum possible distance, consistent with prior whole brain studies. However, if such distances are weighted by the inverse of the magnitude of the connectivity, their sum is among the lowest possible values. Specifically, the hypothalamus appears within the top 94th percentile of neural efficiencies of randomly packed configurations and within one standard deviation of the median efficiency when packings are optimized for maximal neural efficiency. Our results, therefore, indicate that a combination of geometrical and topological constraints help govern the structure of the hypothalamus.

摘要

哺乳动物大脑中的下丘脑负责调节与生存和繁殖相关的功能,它由一组复杂的、高度相互连接但在解剖学和功能上又各不相同的子区域组成。目前尚不清楚是什么因素驱动了下丘脑内子区域的空间组织。一个潜在因素可能是网络的结构连通性,即连接良好的子区域在几何位置上靠得更近,从而促进高效功能,也就是说,最强的轴突信号通过最短的几何距离传递。为了通过实验验证这种效率,我们使用了来自艾伦小鼠脑连接图谱的下丘脑数据,该图谱提供了一系列病毒示踪实验得出的小鼠脑区结构连通性图谱。通过成本函数最小化以及与加权球体填充集合进行比较,我们证明下丘脑子区域之间的距离总和并不接近可能的最小距离,这与之前的全脑研究结果一致。然而,如果这些距离用连通性大小的倒数进行加权,其总和则处于可能的最低值之列。具体而言,当为实现最大神经效率而优化填充时,下丘脑在随机填充配置的神经效率的第94百分位之内,且在中位数效率的一个标准差范围内。因此,我们的结果表明,几何和拓扑约束的结合有助于控制下丘脑的结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11334159/cbf240de39e4/fnsys-18-1417346-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验