Merga Galaan, Lopez Maria Fernandez, Fischer Paul, Piwowarski Patrick, Nogacz Żaneta, Kraskov Anastasia, Buhrke David, Escobar Francisco Velazquez, Michael Norbert, Siebert Friedrich, Scheerer Patrick, Bartl Franz, Hildebrandt Peter
Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstr. 42, D-10115 Berlin, Germany.
Phys Chem Chem Phys. 2021 Sep 7;23(33):18197-18205. doi: 10.1039/d1cp02494a. Epub 2021 Aug 17.
Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.
细菌光敏色素是一种感光光感受器,它将光传感器核心模块(PCM)吸收的光转化为蛋白质结构变化,最终导致酶输出模块的激活。PCM中潜在的光诱导反应级联始于四吡咯发色团的异构化,随后是构象弛豫、质子转移步骤以及肽段(舌)的二级结构转变,该肽段对于将信号传递到输出模块至关重要。在这项工作中,我们采用了各种静态和时间分辨红外及共振拉曼光谱技术,来研究来自根癌农杆菌的深海光敏色素Agp2的PCM以及全长(PCM和输出模块)变体的Meta-F中间体的结构和反应动力学。在这两种情况下,该中间体代表了光转化的一个分支点,因为它开启了一条回到初始状态的非生产性反应通道和一条通向最终活性状态的生产性途径,包括功能性蛋白质结构变化。结果表明,功能量子产率,即每吸收一个光子时舌重新折叠的事件数,比初级光化学过程的量子产率低约两倍。然而,光谱实验得出的动力学数据表明,在光稳态条件下,增加光子通量或升高温度会增加最终活性状态的形成。因此,分支机制不仅解释了光敏色素作为光强度传感器的功能,还可能调节其温度敏感性。