Suppr超能文献

神经 Na+,K+-ATP 酶相关紊乱的基因敲除小鼠模型脑内抗坏血酸(维生素 C)含量降低。

Decreased content of ascorbic acid (vitamin C) in the brain of knockout mouse models of Na+,K+-ATPase-related neurologic disorders.

机构信息

Department of Clinical Research, Group of Pathophysiology, National Hospital Organization Murayama Medical Center, Gakuen, Musashi-Murayama, Tokyo, Japan.

Division of Cell Biology, Center for Molecular Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan.

出版信息

PLoS One. 2021 Feb 5;16(2):e0246678. doi: 10.1371/journal.pone.0246678. eCollection 2021.

Abstract

Na+,K+-ATPase is a crucial protein responsible for maintaining the electrochemical gradients across the cell membrane. The Na+,K+-ATPase is comprised of catalytic α, β, and γ subunits. In adult brains, the α3 subunit, encoded by ATP1A3, is predominantly expressed in neurons, whereas the α2 subunit, encoded by ATP1A2, is expressed in glial cells. In foetal brains, the α2 is expressed in neurons as well. Mutations in α subunits cause a variety of neurologic disorders. Notably, the onset of symptoms in ATP1A2- and ATP1A3-related neurologic disorders is usually triggered by physiological or psychological stressors. To gain insight into the distinct roles of the α2 and α3 subunits in the developing foetal brain, whose developmental dysfunction may be a predisposing factor of neurologic disorders, we compared the phenotypes of mouse foetuses with double homozygous knockout of Atp1a2 and Atp1a3 (α2α3-dKO) to those with single knockout. The brain haemorrhage phenotype of α2α3-dKO was similar to that of homozygous knockout of the gene encoding ascorbic acid (ASC or vitamin C) transporter, SVCT2. The α2α3-dKO brain showed significantly decreased level of ASC compared with the wild-type (WT) and single knockout. We found that the ASC content in the basal ganglia and cerebellum was significantly lower in the adult Atp1a3 heterozygous knockout mouse (α3-HT) than in the WT. Interestingly, we observed a significant decrease in the ASC level in the basal ganglia and cerebellum of α3-HT in the peripartum period, during which mice are under physiological stress. These observations indicate that the α2 and α3 subunits independently contribute to the ASC level in the foetal brain and that the α3 subunit contributes to ASC transport in the adult basal ganglia and cerebellum. We propose that decreases in ASC levels may affect neural network development and are linked to the pathophysiology of ATP1A2- and ATP1A3-related neurologic disorders.

摘要

钠钾 ATP 酶是一种重要的蛋白质,负责维持细胞膜两侧的电化学梯度。钠钾 ATP 酶由催化α、β和γ亚基组成。在成年大脑中,由 ATP1A3 编码的α3 亚基主要在神经元中表达,而由 ATP1A2 编码的α2 亚基则在神经胶质细胞中表达。在胎儿大脑中,α2 也在神经元中表达。α 亚基的突变会导致多种神经疾病。值得注意的是,ATP1A2 和 ATP1A3 相关神经疾病的症状发作通常是由生理或心理应激引起的。为了深入了解α2 和α3 亚基在发育中胎儿大脑中的不同作用,其发育功能障碍可能是神经疾病的一个易感因素,我们比较了 Atp1a2 和 Atp1a3 双纯合敲除(α2α3-dKO)小鼠胎儿与单敲除的表型。α2α3-dKO 大脑的脑出血表型与编码抗坏血酸(ASC 或维生素 C)转运体 SVCT2 的基因纯合敲除相似。与野生型(WT)和单敲除相比,α2α3-dKO 大脑的 ASC 水平显著降低。我们发现,在成年 Atp1a3 杂合敲除(α3-HT)小鼠的基底节和小脑中的 ASC 含量明显低于 WT。有趣的是,我们观察到在围产期(期间小鼠处于生理应激状态)α3-HT 的基底节和小脑中的 ASC 水平显著下降。这些观察结果表明,α2 和α3 亚基独立贡献了胎儿大脑中的 ASC 水平,并且α3 亚基参与了成年基底节和小脑中的 ASC 转运。我们提出,ASC 水平的降低可能会影响神经网络的发育,并与 ATP1A2 和 ATP1A3 相关神经疾病的病理生理学有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eb6/7864419/6474bfad8db4/pone.0246678.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验