Suppr超能文献

构建胶质瘤 ceRNA 网络并分析其临床意义。

Construction of a ceRNA network in glioma and analysis of its clinical significance.

机构信息

Department of Neurosurgery, Hongqi Hospital affiliated to Mudanjiang Medical University, No. 5, Tongxiang Road, Aimin, HeiLongJiang, 157000, MuDanJiang, China.

Department of Intensive Care Unit, Hongqi Hospital affiliated to Mudanjiang Medical University, MuDanJiang, China.

出版信息

BMC Genomics. 2021 Oct 6;22(1):722. doi: 10.1186/s12864-021-08035-w.

Abstract

BACKGROUND

Glioma is the most common central nervous system tumor with a poor survival rate and prognosis. Previous studies have found that long non-coding RNA (lncRNA) and competitive endogenous RNA (ceRNA) play important roles in regulating various tumor mechanisms. We obtained RNA-Seq data of glioma and normal brain tissue samples from TCGA and GTEx databases and extracted the lncRNA and mRNA expression data. Further, we analyzed these data using weighted gene co-expression network analysis and differential expression analysis, respectively. Differential expression analysis was also carried out on the mRNA data from the GEO database. Further, we predicted the interactions between lncRNA, miRNA, and targeted mRNA. Using the CGGA data to perform univariate and multivariate Cox regression analysis on mRNA.

RESULTS

We constructed a Cox proportional hazard regression model containing four mRNAs and performed immune infiltration analysis. Moreover, we also constructed a ceRNA network including 21 lncRNAs, two miRNAs, and four mRNAs, and identified seven lncRNAs related to survival that have not been previously studied in gliomas. Through the gene set enrichment analysis, we found four lncRNAs that may have a significant role in tumors and should be explored further in the context of gliomas.

CONCLUSIONS

In short, we identified four lncRNAs with research value for gliomas, constructed a ceRNA network in gliomas, and developed a prognostic prediction model. Our research enhances our understanding of the molecular mechanisms underlying gliomas, providing new insights for developing targeted therapies and efficiently evaluating the prognosis of gliomas.

摘要

背景

胶质瘤是最常见的中枢神经系统肿瘤,患者生存率和预后较差。先前的研究发现,长链非编码 RNA(lncRNA)和竞争性内源性 RNA(ceRNA)在调节各种肿瘤机制中发挥着重要作用。我们从 TCGA 和 GTEx 数据库中获得了胶质瘤和正常脑组织样本的 RNA-Seq 数据,并提取了 lncRNA 和 mRNA 表达数据。然后,我们分别使用加权基因共表达网络分析和差异表达分析对这些数据进行了分析。还对 GEO 数据库中的 mRNA 数据进行了差异表达分析。进一步,我们预测了 lncRNA、miRNA 和靶向 mRNA 之间的相互作用。使用 CGGA 数据对 mRNA 进行单变量和多变量 Cox 回归分析。

结果

我们构建了一个包含四个 mRNAs 的 Cox 比例风险回归模型,并进行了免疫浸润分析。此外,我们还构建了一个包含 21 个 lncRNA、两个 miRNA 和四个 mRNA 的 ceRNA 网络,并确定了七个与生存相关的以前在胶质瘤中未研究过的 lncRNA。通过基因集富集分析,我们发现了四个可能在肿瘤中具有重要作用的 lncRNA,需要在胶质瘤背景下进一步探索。

结论

总之,我们确定了四个具有研究价值的与胶质瘤相关的 lncRNA,构建了胶质瘤中的 ceRNA 网络,并开发了一种预后预测模型。我们的研究增强了对胶质瘤分子机制的理解,为开发靶向治疗和有效地评估胶质瘤的预后提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1902/8496082/5fcfb76dec99/12864_2021_8035_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验