Seifi Mehdi, Dalle Nogare Damian, Battagliotti Juan Manuel, Galinova Vera, Rao Ananya Kedige, Jouneau Pierre-Henri, Archit Anwai, Pape Constantin, Decelle Johan, Jug Florian, Deschamps Joran
Computational Biology Research Center, Human Technopole, Milan, Italy.
Bioimage Analysis Unit, National Facility for Data Handling and Analysis, Human Technopole, Milan, Italy.
Npj Imaging. 2025 Jul 8;3(1):32. doi: 10.1038/s44303-025-00089-9.
Analysis of biological images relies heavily on segmenting the biological objects of interest in the image before performing quantitative analysis. Deep learning (DL) is ubiquitous in such segmentation tasks, but can be cumbersome to apply, as it often requires a large amount of manual labeling to produce ground-truth data, and expert knowledge to train the models. More recently, large foundation models, such as SAM, have shown promising results on scientific images. They, however, require manual prompting for each object or tedious post-processing to selectively segment these objects. Here, we present FeatureForest, a method that leverages the feature embeddings of large foundation models to train a random forest classifier, thereby providing users with a rapid way of semantically segmenting complex images using only a few labeling strokes. We demonstrate the improvement in performance over a variety of datasets and provide an open-source implementation in napari that can be extended to new models.
生物图像分析在进行定量分析之前,严重依赖于对图像中感兴趣的生物对象进行分割。深度学习(DL)在这类分割任务中无处不在,但应用起来可能很麻烦,因为它通常需要大量的人工标注来生成真实数据,还需要专家知识来训练模型。最近,像SAM这样的大型基础模型在科学图像上显示出了有前景的结果。然而,它们需要对每个对象进行手动提示或进行繁琐的后处理来选择性地分割这些对象。在这里,我们提出了FeatureForest,一种利用大型基础模型的特征嵌入来训练随机森林分类器的方法,从而为用户提供一种仅用几笔标注就能快速对复杂图像进行语义分割的方法。我们展示了在各种数据集上性能的提升,并在napari中提供了一个开源实现,该实现可以扩展到新模型。