文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肿瘤学中的放射组学:一项为期10年的文献计量分析。

Radiomics in Oncology: A 10-Year Bibliometric Analysis.

作者信息

Ding Haoran, Wu Chenzhou, Liao Nailin, Zhan Qi, Sun Weize, Huang Yingzhao, Jiang Zhou, Li Yi

机构信息

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

出版信息

Front Oncol. 2021 Sep 20;11:689802. doi: 10.3389/fonc.2021.689802. eCollection 2021.


DOI:10.3389/fonc.2021.689802
PMID:34616671
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8488302/
Abstract

OBJECTIVES: To date, radiomics has been applied in oncology for over a decade and has shown great progress. We used a bibliometric analysis to analyze the publications of radiomics in oncology to clearly illustrate the current situation and future trends and encourage more researchers to participate in radiomics research in oncology. METHODS: Publications for radiomics in oncology were downloaded from the Web of Science Core Collection (WoSCC). WoSCC data were collected, and CiteSpace was used for a bibliometric analysis of countries, institutions, journals, authors, keywords, and references pertaining to this field. The state of research and areas of focus were analyzed through burst detection. RESULTS: A total of 7,199 pieces of literature concerning radiomics in oncology were analyzed on CiteSpace. The number of publications has undergone rapid growth and continues to increase. The USA and Chinese Academy of Sciences are found to be the most prolific country and institution, respectively. In terms of journals and co-cited journals, is ranked highest with respect to the number of publications, and is ranked highest among co-cited journals. Moreover, Jie Tian has published the most publications, and Phillipe Lambin is the most cited author. A paper published by Gillies et al. presents the highest citation counts. Artificial intelligence (AI), segmentation methods, and the use of radiomics for classification and diagnosis in oncology are major areas of focus in this field. Test-retest statistics, including reproducibility and statistical methods of radiomics research, the relation between genomics and radiomics, and applications of radiomics to sarcoma and intensity-modulated radiotherapy, are frontier areas of this field. CONCLUSION: To our knowledge, this is the first study to provide an overview of the literature related to radiomics in oncology and may inspire researchers from multiple disciplines to engage in radiomics-related research.

摘要

目的:迄今为止,放射组学已在肿瘤学领域应用了十多年,并取得了巨大进展。我们采用文献计量分析方法对肿瘤学中放射组学的出版物进行分析,以清晰阐明当前状况和未来趋势,并鼓励更多研究人员参与肿瘤学放射组学研究。 方法:从科学引文索引核心合集(WoSCC)下载肿瘤学中放射组学的出版物。收集WoSCC数据,并使用CiteSpace对该领域的国家、机构、期刊、作者、关键词和参考文献进行文献计量分析。通过突变检测分析研究现状和重点领域。 结果:在CiteSpace上共分析了7199篇关于肿瘤学放射组学的文献。出版物数量经历了快速增长且持续增加。美国和中国科学院分别是发文量最多的国家和机构。在期刊和共被引期刊方面, 在出版物数量方面排名最高, 在共被引期刊中排名最高。此外,田捷发表的出版物最多,菲利普·兰宾是被引次数最多的作者。吉利斯等人发表的一篇论文的被引次数最高。人工智能(AI)、分割方法以及放射组学在肿瘤学分类和诊断中的应用是该领域的主要重点领域。重测统计,包括放射组学研究的可重复性和统计方法、基因组学与放射组学的关系以及放射组学在肉瘤和调强放射治疗中的应用,是该领域的前沿领域。 结论:据我们所知,这是第一项对肿瘤学中与放射组学相关的文献进行综述的研究,可能会激励多学科研究人员参与放射组学相关研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/5bc027ed168e/fonc-11-689802-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/e94aee642cae/fonc-11-689802-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/e4b7a3747c86/fonc-11-689802-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/d644fe21229d/fonc-11-689802-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/68b988c12fdb/fonc-11-689802-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/6f3c5944f444/fonc-11-689802-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/7e6e59957b23/fonc-11-689802-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/0f4888ae32f9/fonc-11-689802-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/5bc027ed168e/fonc-11-689802-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/e94aee642cae/fonc-11-689802-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/e4b7a3747c86/fonc-11-689802-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/d644fe21229d/fonc-11-689802-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/68b988c12fdb/fonc-11-689802-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/6f3c5944f444/fonc-11-689802-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/7e6e59957b23/fonc-11-689802-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/0f4888ae32f9/fonc-11-689802-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2271/8488302/5bc027ed168e/fonc-11-689802-g008.jpg

相似文献

[1]
Radiomics in Oncology: A 10-Year Bibliometric Analysis.

Front Oncol. 2021-9-20

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Emerging trends in photodynamic therapy for head and neck cancer: A 10-year bibliometric analysis based on CiteSpace.

Photodiagnosis Photodyn Ther. 2022-6

[4]
Frontiers and hotspots of F-FDG PET/CT radiomics: A bibliometric analysis of the published literature.

Front Oncol. 2022-9-13

[5]
Bibliometric research on the developments of artificial intelligence in radiomics toward nervous system diseases.

Front Neurol. 2023-6-9

[6]
Research on application of radiomics in glioma: a bibliometric and visual analysis.

Front Oncol. 2023-9-12

[7]
Research on ultrasound-based radiomics: a bibliometric analysis.

Quant Imaging Med Surg. 2024-7-1

[8]
Research trends in endoscopic applications in early gastric cancer: A bibliometric analysis of studies published from 2012 to 2022.

Front Oncol. 2023-4-11

[9]
Knowledge Structure and Emerging Trends of Telerehabilitation in Recent 20 Years: A Bibliometric Analysis CiteSpace.

Front Public Health. 2022

[10]
Non-suicidal self-injury: A bibliometrics study and visualization analysis from 2002 to 2022.

Front Psychiatry. 2023-2-9

引用本文的文献

[1]
Radiomics Quality Score 2.0: towards radiomics readiness levels and clinical translation for personalized medicine.

Nat Rev Clin Oncol. 2025-9-3

[2]
Knowledge map of self-reported outcomes in patients with prostate cancer: a bibliometric analysis (2014-2023).

Front Urol. 2025-8-15

[3]
Mapping the research trends and hotspots on solid pulmonary nodules from 2000-2024: insights from bibliometric analysis.

J Thorac Dis. 2025-6-30

[4]
Bibliometric analysis of research trends on hyperbaric oxygen therapy in stroke from 2000 to 2022.

Front Neurol. 2025-6-4

[5]
Evaluating feature extraction reproducibility across image biomarker standardization initiative-compliant radiomics platforms using a digital phantom.

J Appl Clin Med Phys. 2025-7

[6]
Application of peritumoral radiomics based on simulated positioning CT images in the prognosis of intermediate-advanced esophageal cancer.

Sci Rep. 2025-4-7

[7]
Radiomics for prediction of perineural invasion in colorectal cancer: a systematic review and meta-analysis.

Abdom Radiol (NY). 2025-1-22

[8]
Radiomics in precision medicine for colorectal cancer: a bibliometric analysis (2013-2023).

Front Oncol. 2024-10-30

[9]
Machine learning-based radiomics in neurodegenerative and cerebrovascular disease.

MedComm (2020). 2024-10-28

[10]
Mapping knowledge structure and themes trends of non-surgical treatment in intervertebral disc degeneration.

Heliyon. 2024-8-28

本文引用的文献

[1]
A 10-year bibliometric analysis of osteosarcoma and cure from 2010 to 2019.

BMC Cancer. 2021-2-4

[2]
[AI-based computer-aided diagnosis (AI-CAD): The latest review to read first].

Igaku Butsuri. 2020

[3]
CT-based radiomics features in the prediction of thyroid cartilage invasion from laryngeal and hypopharyngeal squamous cell carcinoma.

Cancer Imaging. 2020-11-11

[4]
Publication trends and hot spots in postoperative cognitive dysfunction research: A 20-year bibliometric analysis.

J Clin Anesth. 2020-12

[5]
Bibliometric evaluation of 2000-2019 publications on functional near-infrared spectroscopy.

Neuroimage. 2020-10-15

[6]
Relevance of apparent diffusion coefficient features for a radiomics-based prediction of response to induction chemotherapy in sinonasal cancer.

NMR Biomed. 2022-4

[7]
Classifying Neck Lymph Nodes of Head and Neck Squamous Cell Carcinoma in MRI Images with Radiomic Features.

J Digit Imaging. 2020-6

[8]
Cancer statistics, 2020.

CA Cancer J Clin. 2020-1-8

[9]
Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos).

Gastrointest Endosc. 2019-8-21

[10]
Development and validation of radiomic signatures of head and neck squamous cell carcinoma molecular features and subtypes.

EBioMedicine. 2019-6-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索