Pan Ian
University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH and Case Western Reserve University School of Medicine, Cleveland, Ohio.
Radiol Artif Intell. 2021 Jun 9;3(5):e210068. doi: 10.1148/ryai.2021210068. eCollection 2021 Sep.
In 2020, the Radiological Society of North America and Society of Thoracic Radiology sponsored a machine learning competition to detect and classify pulmonary embolism (PE). This challenge was one of the largest of its kind, with more than 9000 CT pulmonary angiography examinations comprising almost 1.8 million expertly annotated images. More than 700 international teams competed to predict the presence of PE on individual axial images, the overall presence of PE in the CT examination (with chronicity and laterality), and the ratio of right ventricular size to left ventricular size. This article presents a detailed overview of the second-place solution. Source code and models are available at . CT, Neural Networks, Thorax, Pulmonary Arteries, Embolism/Thrombosis, Supervised Learning, Convolutional Neural Networks (CNN), Machine Learning Algorithms © RSNA, 2021.
2020年,北美放射学会和胸放射学会发起了一场用于检测和分类肺栓塞(PE)的机器学习竞赛。这项挑战是同类挑战中规模最大的之一,有9000多项CT肺动脉造影检查,包含近180万张经过专家标注的图像。700多个国际团队参与竞争,以预测单个轴向图像上PE的存在、CT检查中PE的整体存在情况(包括慢性和左右侧情况)以及右心室大小与左心室大小的比例。本文详细概述了获得第二名的解决方案。源代码和模型可在[具体网址]获取。CT、神经网络、胸部、肺动脉、栓塞/血栓形成、监督学习、卷积神经网络(CNN)、机器学习算法 © RSNA,2021年