Suppr超能文献

利用2017年RSNA机器学习挑战赛的模型集成改进自动儿科骨龄估计

Improving Automated Pediatric Bone Age Estimation Using Ensembles of Models from the 2017 RSNA Machine Learning Challenge.

作者信息

Pan Ian, Thodberg Hans Henrik, Halabi Safwan S, Kalpathy-Cramer Jayashree, Larson David B

机构信息

Department of Radiology, Warren Alpert Medical School, Brown University, 593 Eddy St, Providence, RI 02903 (I.P.); Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI (I.P.); Visiana, Hørsholm, Denmark (H.H.T.); Department of Radiology, Stanford University, Palo Alto, Calif (S.S.H., D.B.L.); and Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.K.C.).

出版信息

Radiol Artif Intell. 2019 Nov 20;1(6):e190053. doi: 10.1148/ryai.2019190053.

Abstract

PURPOSE

To investigate improvements in performance for automatic bone age estimation that can be gained through model ensembling.

MATERIALS AND METHODS

A total of 48 submissions from the 2017 RSNA Pediatric Bone Age Machine Learning Challenge were used. Participants were provided with 12 611 pediatric hand radiographs with bone ages determined by a pediatric radiologist to develop models for bone age determination. The final results were determined using a test set of 200 radiographs labeled with the weighted average of six ratings. The mean pairwise model correlation and performance of all possible model combinations for ensembles of up to 10 models using the mean absolute deviation (MAD) were evaluated. A bootstrap analysis using the 200 test radiographs was conducted to estimate the true generalization MAD.

RESULTS

The estimated generalization MAD of a single model was 4.55 months. The best-performing ensemble consisted of four models with an MAD of 3.79 months. The mean pairwise correlation of models within this ensemble was 0.47. In comparison, the lowest achievable MAD by combining the highest-ranking models based on individual scores was 3.93 months using eight models with a mean pairwise model correlation of 0.67.

CONCLUSION

Combining less-correlated, high-performing models resulted in better performance than naively combining the top-performing models. Machine learning competitions within radiology should be encouraged to spur development of heterogeneous models whose predictions can be combined to achieve optimal performance.© RSNA, 2019 See also the commentary by Siegel in this issue.

摘要

目的

研究通过模型集成提高自动骨龄估计的性能。

材料与方法

使用了2017年RSNA儿科骨龄机器学习挑战赛的48份参赛作品。为参与者提供了12611张儿科手部X光片,其骨龄由儿科放射科医生确定,用于开发骨龄测定模型。最终结果使用一组200张X光片的测试集确定,该测试集标记有六个评分的加权平均值。使用平均绝对偏差(MAD)评估了多达10个模型的所有可能模型组合的平均成对模型相关性和性能。使用200张测试X光片进行了自举分析,以估计真实的泛化MAD。

结果

单个模型的估计泛化MAD为4.55个月。表现最佳的集成由四个模型组成,MAD为3.79个月。该集成中模型的平均成对相关性为0.47。相比之下,基于个体分数组合排名最高的模型可实现的最低MAD为3.93个月,使用八个模型,平均成对模型相关性为0.67。

结论

组合相关性较低的高性能模型比单纯组合表现最佳的模型具有更好的性能。应鼓励放射学领域的机器学习竞赛,以促进异质模型的开发,其预测结果可以组合以实现最佳性能。©RSNA,2019 另见本期Siegel的评论。

相似文献

2
The RSNA Pediatric Bone Age Machine Learning Challenge.RSNA 儿科骨龄机器学习挑战赛。
Radiology. 2019 Feb;290(2):498-503. doi: 10.1148/radiol.2018180736. Epub 2018 Nov 27.

引用本文的文献

2
Determination of Skeletal Age From Hand Radiographs Using Deep Learning.利用深度学习从手部X光片确定骨骼年龄
Am J Sports Med. 2025 Sep;53(11):2715-2725. doi: 10.1177/03635465251359618. Epub 2025 Aug 15.
4
A review of methods of age estimation based on postmortem computed tomography.基于死后计算机断层扫描的年龄估计方法综述
Forensic Sci Res. 2024 Jul 18;10(1):owae036. doi: 10.1093/fsr/owae036. eCollection 2025 Mar.
6
The automated Greulich and Pyle: a coming-of-age for segmental methods?自动格雷利希和派尔法:分段方法的成熟?
Front Artif Intell. 2024 Mar 12;7:1326488. doi: 10.3389/frai.2024.1326488. eCollection 2024.

本文引用的文献

4
The RSNA Pediatric Bone Age Machine Learning Challenge.RSNA 儿科骨龄机器学习挑战赛。
Radiology. 2019 Feb;290(2):498-503. doi: 10.1148/radiol.2018180736. Epub 2018 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验