Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.
Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium.
Nucleic Acids Res. 2022 May 20;50(9):4974-4987. doi: 10.1093/nar/gkac268.
Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
结构维持染色体 (SMC) 复合物在所有生命领域的基因组组织中发挥着重要作用。为了确定这些大型(≈50nm)复合物的活性如何通过 ATP 结合和水解来控制,我们开发了一种分子动力学模型,该模型考虑了 SMC 和 DNA 的构象运动。该模型将 DNA 环捕获与 ATP 诱导的“动力冲程”相结合,使 SMC 复合物沿 DNA 移位。这个过程对 DNA 张力很敏感:在低张力(0.1pN)下,模型的环捕获步骤平均为 60nm 长,最长可达 200nm 长(比复合物本身还长),而在较高的张力下,会出现明显的尺蠖式迁移模式。通过将 DNA 固定在实验观察到的额外结合位点(“安全带”)上,模型 SMC 复合物可以进行环挤出 (LE)。LE 对 DNA 张力的依赖性对于固定 DNA 张力与固定 DNA 端点是不同的:对于固定张力,LE 反转发生在 0.5pN 以上,而对于固定端点,LE 停滞而不反转发生在大约 2pN。我们的模型与最近关于凝聚素和黏合素的实验结果相匹配,并对特定结构变化如何影响 SMC 功能做出了可测试的预测。