Suppr超能文献

日内瓦联盟中基于基因的龋齿关联图谱研究

Gene-Based Association Mapping for Dental Caries in The GENEVA Consortium.

作者信息

Wang Yueyao, Bandyopadhyay Dipankar, Shaffer John R, Wu Xiaowei

机构信息

Department of Statistics, Virginia Polytechnic Institute & State University, Blacksburg, VA.

Department of Biostatistics, Virginia Commonwealth University, Richmond, VA.

出版信息

J Dent Dent Med. 2020 May;3(4). Epub 2020 Apr 15.

Abstract

OBJECTIVE

Dental caries is a multifactorial disease with high prevalence in both children and adults. Recent genome-wide association studies (GWASs) have revealed that genetic factors play an important role in caries incidence. However, existing methods are not sufficient to identify caries-associated genes, due to the complex correlation structure of caries GWAS data, and lack of appropriate summarization at the gene level. This paper attempts to address that by analyzing data from the Gene, Environment Association Studies (GENEVA) consortium.

METHODS

We investigated gene-based genetic associations for dental caries based on genome-wide data derived from the GENEVA database, with adjustment to covariates, linkage disequilibrium among single-nucleotide polymorphisms, and family relations, in sampled individuals.

RESULTS

Several suggestive genes were identified, in which some of them have been previously found to have potential biological functions on cariogenesis.

CONCLUSIONS

By comparing the gene sets identified from gene-based and SNP-based association testing methods, we found a non-negligible overlap, which indicates that our gene-based analysis can provide substantial supplement to the traditional GWAS analysis.

摘要

目的

龋齿是一种在儿童和成人中都具有高患病率的多因素疾病。最近的全基因组关联研究(GWAS)表明,遗传因素在龋齿发病中起着重要作用。然而,由于龋齿GWAS数据复杂的相关结构以及在基因水平缺乏适当的汇总,现有方法不足以识别与龋齿相关的基因。本文试图通过分析基因、环境关联研究(GENEVA)联盟的数据来解决这一问题。

方法

我们基于从GENEVA数据库获得的全基因组数据,对抽样个体中的协变量、单核苷酸多态性之间的连锁不平衡以及家族关系进行了调整,研究了基于基因的龋齿遗传关联。

结果

鉴定出了几个有提示性的基因,其中一些基因先前已被发现对龋齿发生具有潜在生物学功能。

结论

通过比较基于基因和基于单核苷酸多态性的关联测试方法所鉴定的基因集,我们发现了不可忽视的重叠,这表明我们基于基因的分析可以为传统的GWAS分析提供实质性补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c1c/8494074/b9af91dff5f3/nihms-1609079-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验