Suppr超能文献

基于家系或群体结构数据的连锁和核方法进行多重遗传变异关联测试。

Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data.

机构信息

Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota 55905, USA.

出版信息

Genet Epidemiol. 2013 Jul;37(5):409-18. doi: 10.1002/gepi.21727. Epub 2013 May 5.

Abstract

Searching for rare genetic variants associated with complex diseases can be facilitated by enriching for diseased carriers of rare variants by sampling cases from pedigrees enriched for disease, possibly with related or unrelated controls. This strategy, however, complicates analyses because of shared genetic ancestry, as well as linkage disequilibrium among genetic markers. To overcome these problems, we developed broad classes of "burden" statistics and kernel statistics, extending commonly used methods for unrelated case-control data to allow for known pedigree relationships, for autosomes and the X chromosome. Furthermore, by replacing pedigree-based genetic correlation matrices with estimates of genetic relationships based on large-scale genomic data, our methods can be used to account for population-structured data. By simulations, we show that the type I error rates of our developed methods are near the asymptotic nominal levels, allowing rapid computation of P-values. Our simulations also show that a linear weighted kernel statistic is generally more powerful than a weighted "burden" statistic. Because the proposed statistics are rapid to compute, they can be readily used for large-scale screening of the association of genomic sequence data with disease status.

摘要

通过从富含疾病的家系中取样,对罕见变异的疾病携带者进行富集,从而搜索与复杂疾病相关的罕见遗传变异,这可以得到促进,这些携带者可能携带有相关或不相关的对照。然而,由于共享的遗传亲缘关系以及遗传标记之间的连锁不平衡,这种策略会使分析变得复杂。为了克服这些问题,我们开发了广泛的“负担”统计量和核统计量,将常用于无关病例对照数据的常用方法扩展到允许已知家系关系的常染色体和 X 染色体。此外,通过用基于大规模基因组数据的遗传关系估计值代替基于家系的遗传相关矩阵,我们的方法可用于解释具有群体结构的数据。通过模拟,我们表明所开发方法的Ⅰ型错误率接近渐近名义水平,从而允许快速计算 P 值。我们的模拟还表明,线性加权核统计量通常比加权“负担”统计量更有效。由于所提出的统计量计算速度很快,因此它们可以方便地用于大规模筛查基因组序列数据与疾病状态之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bdd/3706099/893a83cfb52e/nihms-487638-f0001.jpg

相似文献

6

引用本文的文献

本文引用的文献

4
SNP set association analysis for familial data.家族数据的单核苷酸多态性集合关联分析。
Genet Epidemiol. 2012 Dec;36(8):797-810. doi: 10.1002/gepi.21676. Epub 2012 Sep 11.
6
Optimal tests for rare variant effects in sequencing association studies.测序关联研究中罕见变异效应的最优检验。
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验