Vangelatos Zacharias, Sheikh Haris Moazam, Marcus Philip S, Grigoropoulos Costas P, Lopez Victor Z, Flamourakis George, Farsari Maria
Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.
Laser Thermal Lab, University of California, Berkeley, Berkeley, CA 94720, USA.
Sci Adv. 2021 Oct 8;7(41):eabk2218. doi: 10.1126/sciadv.abk2218.
We use a previously unexplored Bayesian optimization framework, “evolutionary Monte Carlo sampling,” to systematically design the arrangement of defects in an architected microlattice to maximize its strain energy density before undergoing catastrophic failure. Our algorithm searches a design space with billions of 4 × 4 × 5 3D lattices, yet it finds the global optimum with only 250 cost function evaluations. Our optimum has a normalized strain energy density 12,464 times greater than its commonly studied defect-free counterpart. Traditional optimization is inefficient for this microlattice because (i) the design space has discrete, qualitative parameter states as input variables, (ii) the cost function is computationally expensive, and (iii) the design space is large. Our proposed framework is useful for architected materials and for many optimization problems in science and elucidates how defects can enhance the mechanical performance of architected materials.
我们使用了一个此前未被探索过的贝叶斯优化框架——“进化蒙特卡洛采样”,来系统地设计一种微结构晶格中的缺陷排列,以便在发生灾难性失效之前使其应变能密度最大化。我们的算法在包含数十亿个4×4×5三维晶格的设计空间中进行搜索,但仅通过250次成本函数评估就找到了全局最优解。我们找到的最优解的归一化应变能密度比通常研究的无缺陷对应物大12464倍。传统优化方法对于这种微结构晶格效率低下,原因如下:(i)设计空间具有离散的、定性的参数状态作为输入变量;(ii)成本函数的计算成本高昂;(iii)设计空间很大。我们提出的框架对于微结构材料以及科学中的许多优化问题都很有用,并且阐明了缺陷如何能够提高微结构材料的力学性能。