Suppr超能文献

[高分辨率CT对内耳关键结构定量测量在先天性重度感音神经性聋患者听力评估中的价值]

[The value of quantitative measurement of key structures of inner ear by HRCT in hearing evaluation of patients with congenital severe sensorineural deafness].

作者信息

Wang Lin, Xia Guihua, Chen Xudong

机构信息

Department of Otorhinolaryngology,Beilun District People's Hospital(Beilun Branch of the First Hospital of Zhejiang University),Ningbo,315800,China.

Department of Radiology,Beilun District People's Hospital(Beilun Branch of the First Hospital of Zhejiang University).

出版信息

Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2021 Oct;35(10):880-885. doi: 10.13201/j.issn.2096-7993.2021.10.004.

Abstract

Study on the value of quantitative measurement of key structures of inner ear by high resolution computer tomography(HRCT) in hearing evaluation of patients with congenital severe sensorineural hearing loss(SNHL). A total of 90 children with extremely severe SNHL diagnosed and treated in Beilun District People's Hospital from January 2018 to February 2021 were collected as the experimental group. In the same period, 90 children(180 ears) with normal inner ear structure and hearing were scanned because of head trauma and suspected temporal bone fracture. Logistic univariate and multivariate regression analysis were used to analyze the factors affecting the occurrence of extremely severe SNHL. Based on the results of multivariate analysis, a Nomogram prediction model was established. The model before and after internal correction was evaluated by the receiver working characteristic curve. Inner ear malformation, SSCC bone island width, LSCC bone island width and cochlear height were independent risk factors for extremely severe SNHL. The results of Nomogram predictive model showed that cochlear height 34 points, LSCC bone island width 19 points, SSCC bone island width 22 points, inner ear malformation 37 points, the total score(112 points) corresponding to the incidence of extremely severe SNHL(0.3%). The actual C-index value of Nomogram prediction model is 0.858, the C-index of internal verification is 0.851, and the C-index of external verification is 0.847. The coincidence of the model is good. It is suggested that the model can effectively predict the risk factors of congenital extremely severe SNHL and has high prediction accuracy. The standardized measurement of SSCC bone island width, LSCC bone island width and cochlear height by HRCT is of great value in the diagnosis of microinner ear malformation in children with extremely severe SNHL.

摘要

高分辨率计算机断层扫描(HRCT)对内耳关键结构进行定量测量在先天性重度感音神经性听力损失(SNHL)患者听力评估中的价值研究。选取2018年1月至2021年2月在北仑区人民医院确诊并治疗的90例极重度SNHL儿童作为实验组。同期,因头部外伤及疑似颞骨骨折对90例内耳结构及听力正常的儿童(180耳)进行扫描。采用Logistic单因素和多因素回归分析影响极重度SNHL发生的因素。基于多因素分析结果建立列线图预测模型。采用受试者工作特征曲线评估内部校正前后模型。内耳畸形、后半规管骨岛宽度、外侧半规管骨岛宽度及耳蜗高度是极重度SNHL的独立危险因素。列线图预测模型结果显示,耳蜗高度34分,外侧半规管骨岛宽度19分,后半规管骨岛宽度22分,内耳畸形37分,总分(112分)对应的极重度SNHL发生率为0.3%。列线图预测模型实际C指数值为0.858,内部验证C指数为0.851,外部验证C指数为0.847。模型一致性良好。提示该模型可有效预测先天性极重度SNHL的危险因素,预测准确性高。HRCT对后半规管骨岛宽度、外侧半规管骨岛宽度及耳蜗高度的标准化测量在极重度SNHL儿童微小内耳畸形诊断中具有重要价值。

相似文献

7
[Computer tomography demonstrations of single-sided deafness].[单侧耳聋的计算机断层扫描演示]
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020 Nov;34(11):981-986. doi: 10.13201/j.issn.2096-7993.2020.11.005.

本文引用的文献

1
[An analysis of surgical management of difficulties during cochlear implant with inner ear anomalies].[内耳畸形人工耳蜗植入术中困难的外科处理分析]
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020 Oct;34(10):919-924. doi: 10.13201/j.issn.2096-7993.2020.10.012.
5
Early Intratympanic Methylprednisolone in Sudden SNHL: A Frequency-wise Analysis.突发性感音神经性听力损失早期鼓室内注射甲泼尼龙:频率分析
Indian J Otolaryngol Head Neck Surg. 2019 Sep;71(3):390-395. doi: 10.1007/s12070-019-01582-5. Epub 2019 Jan 20.
6
[Congenital middle ear malformation: clinical analysis and discussion of classification].[先天性中耳畸形:临床分析与分类探讨]
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019 Jul 7;54(7):481-488. doi: 10.3760/cma.j.issn.1673-0860.2019.07.001.
8
[Clinical analysis of 54 patients with non-syndromic enlarged vestibular aqueduct].54例非综合征性大前庭导水管患者的临床分析
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019 Mar;33(3):255-258. doi: 10.13201/j.issn.1001-1781.2019.03.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验