Department of Ophthalmology, Shiga University of Medical Science, 520 - 2192, Seta Tsukinowacho, Otsu, Shiga, Japan.
Graefes Arch Clin Exp Ophthalmol. 2022 Apr;260(4):1113-1123. doi: 10.1007/s00417-021-05427-2. Epub 2021 Oct 12.
To create a model for prediction of postoperative visual acuity (VA) after vitrectomy for macular hole (MH) treatment using preoperative optical coherence tomography (OCT) images, using deep learning (DL)-based artificial intelligence.
This was a retrospective single-center study. We evaluated 259 eyes that underwent vitrectomy for MHs. We divided the eyes into four groups, based on their 6-month postoperative Snellen VA values: (A) ≥ 20/20; (B) 20/25-20/32; (C) 20/32-20/63; and (D) ≤ 20/100. Training data were randomly selected, comprising 20 eyes in each group. Test data were also randomly selected, comprising 52 total eyes in the same proportions as those of each group in the total database. Preoperative OCT images with corresponding postoperative VA values were used to train the original DL network. The final prediction of postoperative VA was subjected to regression analysis based on inferences made with DL network output. We created a model for predicting postoperative VA from preoperative VA, MH size, and age using multivariate linear regression. Precision values were determined, and correlation coefficients between predicted and actual postoperative VA values were calculated in two models.
The DL and multivariate models had precision values of 46% and 40%, respectively. The predicted postoperative VA values on the basis of DL and on preoperative VA and MH size were correlated with actual postoperative VA at 6 months postoperatively (P < .0001 and P < .0001, r = .62 and r = .55, respectively).
Postoperative VA after MH treatment could be predicted via DL using preoperative OCT images with greater accuracy than multivariate linear regression using preoperative VA, MH size, and age.
使用基于深度学习(DL)的人工智能,基于术前光学相干断层扫描(OCT)图像,为黄斑裂孔(MH)治疗的玻璃体切割术后视力(VA)预测创建一个模型。
这是一项回顾性单中心研究。我们评估了 259 只接受 MH 玻璃体切割术的眼睛。我们根据术后 6 个月的 Snellen VA 值将这些眼睛分为四组:(A)≥20/20;(B)20/25-20/32;(C)20/32-20/63;和(D)≤20/100。训练数据是随机选择的,每组包含 20 只眼睛。测试数据也是随机选择的,总数据库中每组的比例为 52 只眼睛。使用相应的术后 VA 值的术前 OCT 图像来训练原始 DL 网络。根据 DL 网络输出进行推断,对术后 VA 的最终预测进行回归分析。我们使用多元线性回归创建了一个从术前 VA、MH 大小和年龄预测术后 VA 的模型。确定了精度值,并计算了两个模型中预测和实际术后 VA 值之间的相关系数。
DL 和多元模型的精度值分别为 46%和 40%。基于 DL 和基于术前 VA 和 MH 大小的预测术后 VA 值与术后 6 个月的实际术后 VA 值相关(P<.0001 和 P<.0001,r=0.62 和 r=0.55)。
通过使用术前 OCT 图像的 DL 可以比使用术前 VA、MH 大小和年龄的多元线性回归更准确地预测 MH 治疗后的术后 VA。