Suppr超能文献

通过改进低温空分装置的压缩热管理来减少与氧气生产相关的温室气体排放。

Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit.

机构信息

Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.

Department of Process Technique, Faculty of Manufacturing Technologies with a Seat in Presov, Technical University of Kosice, Bayerova 1, 080 01 Presov, Slovakia.

出版信息

Int J Environ Res Public Health. 2021 Oct 1;18(19):10370. doi: 10.3390/ijerph181910370.

Abstract

Oxygen production in cryogenic air separation units is related to a significant carbon footprint and its supply in the medicinal sphere became critical during the recent COVID-19 crisis. An improved unit design was proposed, utilizing a part of waste heat produced during air pre-cooling and intercooling via absorption coolers, to reduce power consumption. Variable ambient air humidity impact on compressed air dryers' regeneration was also considered. A steady-state process simulation of a model 500 t h inlet cryogenic air separation unit was performed in Aspen Plus V11. Comparison of a model without and with absorption coolers yielded an achievable reduction in power consumption for air compression and air dryer regeneration by 6 to 9% (23 to 33 GWh year) and a favorable simple payback period of 4 to 10 years, both depending on air pressure loss in additional heat exchangers to be installed. The resulting specific oxygen production decrease amounted to EUR 2-4.2 t. Emissions of major gaseous pollutants from power production were both calculated by an in-house developed thermal power plant model and adopted from literature. A power consumption cut was translated into the following annual greenhouse gas emission reduction: CO 16 to 30 kilotons, CO 0.3 to 2.3 tons, SO 4.7 to 187 tons and NO 11 to 56 tons, depending on applied fossil fuel-based emission factors. Considering a more renewable energy sources-containing energy mix, annual greenhouse gas emissions decreased by 50 to over 80%, varying for individual pollutants.

摘要

低温空气分离装置中的氧气生产与显著的碳足迹有关,在最近的 COVID-19 危机期间,其在医疗领域的供应变得至关重要。提出了一种改进的单元设计,利用空气预冷和中间冷却过程中通过吸收式冷却器产生的部分余热,以减少电力消耗。还考虑了环境空气湿度变化对压缩空气干燥器再生的影响。在 Aspen Plus V11 中对模型 500 t h 进气低温空气分离装置进行了稳态过程模拟。对没有和有吸收式冷却器的模型进行了比较,得出空气压缩和空气干燥器再生的电力消耗可降低 6%至 9%(23 至 33 GWh 年),有利的简单投资回收期为 4 至 10 年,这取决于要安装的额外热交换器中的空气压力损失。由此导致的单位氧气生产成本降低了 2 至 4.2 欧元。主要气体污染物的排放量均通过内部开发的火力发电厂模型和文献中的数据进行了计算。电力消耗的削减转化为以下年度温室气体减排量:CO 16 至 30 千吨、CO 0.3 至 2.3 吨、SO 4.7 至 187 吨和 NO 11 至 56 吨,具体取决于所采用的化石燃料排放因子。考虑到更含可再生能源的能源组合,年度温室气体排放量减少了 50%至 80%以上,个别污染物的排放量有所不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验