Suppr超能文献

Pose2Sim:一种用于三维无标记运动生物力学的端到端工作流程——第 1 部分:稳健性。

Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 1: Robustness.

机构信息

Laboratoire Jean Kuntzmann, Université Grenoble Alpes, UMR CNRS 5224, 38330 Montbonnot-Saint-Martin, France.

Institut Pprime, Université de Poitiers, CNRS UPR 3346, 86360 Chasseneuil-du-Poitou, France.

出版信息

Sensors (Basel). 2021 Sep 30;21(19):6530. doi: 10.3390/s21196530.

Abstract

Being able to capture relevant information about elite athletes' movement "in the wild" is challenging, especially because reference marker-based approaches hinder natural movement and are highly sensitive to environmental conditions. We propose Pose2Sim, a markerless kinematics workflow that uses OpenPose 2D pose detections from multiple views as inputs, identifies the person of interest, robustly triangulates joint coordinates from calibrated cameras, and feeds those to a 3D inverse kinematic full-body OpenSim model in order to compute biomechanically congruent joint angles. We assessed the robustness of this workflow when facing simulated challenging conditions: (Im) degrades image quality (11-pixel Gaussian blur and 0.5 gamma compression); (4c) uses few cameras (4 vs. 8); and (Cal) introduces calibration errors (1 cm vs. perfect calibration). Three physical activities were investigated: walking, running, and cycling. When averaged over all joint angles, stride-to-stride standard deviations lay between 1.7° and 3.2° for all conditions and tasks, and mean absolute errors (compared to the reference condition-Ref) ranged between 0.35° and 1.6°. For walking, errors in the sagittal plane were: 1.5°, 0.90°, 0.19° for (Im), (4c), and (Cal), respectively. In conclusion, Pose2Sim provides a simple and robust markerless kinematics analysis from a network of calibrated cameras.

摘要

能够在“自然”环境中捕捉精英运动员运动的相关信息具有挑战性,特别是因为基于参考标记的方法会阻碍自然运动,并且对环境条件高度敏感。我们提出了 Pose2Sim,这是一种无标记运动学工作流程,它使用来自多个视图的 OpenPose 2D 姿势检测作为输入,识别感兴趣的人,从校准的相机中稳健地三角化关节坐标,并将这些坐标输入到 3D 逆运动学全身 OpenSim 模型中,以计算生物力学一致的关节角度。我们评估了该工作流程在面对模拟挑战条件时的稳健性:(Im)降低图像质量(11 像素高斯模糊和 0.5 伽马压缩);(4c)使用较少的相机(4 个与 8 个);(Cal)引入校准误差(1 厘米与完美校准)。研究了三种体育活动:步行、跑步和骑自行车。当平均所有关节角度时,所有条件和任务的步长间标准偏差在 1.7°至 3.2°之间,与参考条件-Ref 的平均绝对误差(MAE)范围在 0.35°至 1.6°之间。对于步行,矢状面的误差分别为:1.5°、0.90°、0.19°,对应于(Im)、(4c)和(Cal)。总之,Pose2Sim 提供了一种简单而稳健的无标记运动学分析,来自校准相机的网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6545/8512754/eef5bdf92912/sensors-21-06530-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验