聚-ε-己内酯/纤维蛋白-海藻酸盐支架:一种用于治疗骨缺损的新型促血管生成复合生物材料。
Poly-ε-Caprolactone/Fibrin-Alginate Scaffold: A New Pro-Angiogenic Composite Biomaterial for the Treatment of Bone Defects.
作者信息
Ren Jiongyu, Kohli Nupur, Sharma Vaibhav, Shakouri Taleen, Keskin-Erdogan Zalike, Saifzadeh Siamak, Brierly Gary I, Knowles Jonathan C, Woodruff Maria A, García-Gareta Elena
机构信息
Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia.
Regenerative Biomaterials Group, The RAFT Institute & The Griffin Institute, Northwick Park & Saint Mark's Hospital, London HA1 3UJ, UK.
出版信息
Polymers (Basel). 2021 Oct 2;13(19):3399. doi: 10.3390/polym13193399.
We hypothesized that a composite of 3D porous melt-electrowritten poly-ɛ-caprolactone (PCL) coated throughout with a porous and slowly biodegradable fibrin/alginate (FA) matrix would accelerate bone repair due to its angiogenic potential. Scanning electron microscopy showed that the open pore structure of the FA matrix was maintained in the PCL/FA composites. Fourier transform infrared spectroscopy and differential scanning calorimetry showed complete coverage of the PCL fibres by FA, and the PCL/FA crystallinity was decreased compared with PCL. In vitro cell work with osteoprogenitor cells showed that they preferentially bound to the FA component and proliferated on all scaffolds over 28 days. A chorioallantoic membrane assay showed more blood vessel infiltration into FA and PCL/FA compared with PCL, and a significantly higher number of bifurcation points for PCL/FA compared with both FA and PCL. Implantation into a rat cranial defect model followed by microcomputed tomography, histology, and immunohistochemistry after 4- and 12-weeks post operation showed fast early bone formation at week 4, with significantly higher bone formation for FA and PCL/FA compared with PCL. However, this phenomenon was not extrapolated to week 12. Therefore, for long-term bone regeneration, tuning of FA degradation to ensure syncing with new bone formation is likely necessary.
我们假设,一种3D多孔熔融电写聚己内酯(PCL)与多孔且可缓慢生物降解的纤维蛋白/藻酸盐(FA)基质整体涂层相结合的复合材料,因其具有血管生成潜力,将加速骨修复。扫描电子显微镜显示,FA基质的开孔结构在PCL/FA复合材料中得以保持。傅里叶变换红外光谱和差示扫描量热法表明,FA完全覆盖了PCL纤维,并且与PCL相比,PCL/FA的结晶度降低。对骨祖细胞进行的体外细胞研究表明,它们优先与FA成分结合,并在所有支架上增殖超过28天。绒毛尿囊膜试验显示,与PCL相比,FA和PCL/FA中有更多的血管浸润,并且与FA和PCL相比,PCL/FA的分叉点数量显著更高。将其植入大鼠颅骨缺损模型,术后4周和12周进行微型计算机断层扫描、组织学和免疫组织化学检查,结果显示在第4周时早期骨形成迅速,与PCL相比,FA和PCL/FA的骨形成显著更高。然而,这种现象在第12周时并未持续。因此,对于长期骨再生而言,可能有必要调整FA的降解,以确保与新骨形成同步。
相似文献
J Biomed Mater Res B Appl Biomater. 2022-11
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2016-5-8
Nanomaterials (Basel). 2021-9-21
J Biomed Mater Res B Appl Biomater. 2008-11
引用本文的文献
ACS Omega. 2024-7-2
J Mater Chem B. 2024-3-13
J Musculoskelet Neuronal Interact. 2023-12-1
ACS Biomater Sci Eng. 2023-3-13
本文引用的文献
Mater Sci Eng C Mater Biol Appl. 2019-7-6