Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, China.
Br J Radiol. 2024 Jan 23;97(1153):201-209. doi: 10.1093/bjr/tqad010.
To create a MRI-derived radiomics nomogram that combined clinicopathological factors and radiomics signature (Rad-score) for predicting disease-free survival (DFS) in patients with bladder cancer (BCa) following partial resection (PR) or radical cystectomy (RC), including lymphadenectomy (LAE).
Finally, 80 patients with BCa after PR or RC with LAE were enrolled. Patients were randomly split into training (n = 56) and internal validation (n = 24) cohorts. Radiomic features were extracted from T2-weighted, dynamic contrast-enhanced, diffusion-weighted imaging, and apparent diffusion coefficient sequence. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was applied to choose the valuable features and construct the Rad-score. The DFS prediction model was built using the Cox proportional hazards model. The relationship between the Rad-score and DFS was assessed using Kaplan-Meier analysis. A radiomics nomogram that combined the Rad-score and clinicopathological factors was created for individualized DFS estimation.
In both the training and validation cohorts, the Rad-score was positively correlated with DFS (P < .001). In the validation cohort, the radiomics nomogram combining the Rad-score, tumour pathologic stage (pT stage), and lymphovascular invasion (LVI) achieved better performance in DFS prediction (C-index, 0.807; 95% CI, 0.713-0.901) than either the clinicopathological (C-index, 0.654; 95% CI, 0.467-0.841) or Rad-score-only model (C-index, 0.770; 95% CI, 0.702-0.837).
The Rad-score was an independent predictor of DFS for patients with BCa after PR or RC with LAE, and the radiomics nomogram that combined the Rad-score, pT stage, and LVI achieved better performance in individual DFS prediction.
This study provided a non-invasive and simple method for personalized and accurate prediction of DFS in BCa patients after PR or RC.
建立一个基于 MRI 衍生的放射组学列线图,该列线图结合临床病理因素和放射组学特征(Rad-score),用于预测接受部分切除术(PR)或根治性膀胱切除术(RC)加淋巴结清扫术(LAE)的膀胱癌(BCa)患者的无病生存(DFS)。
最终纳入了 80 例接受 PR 或 RC 加 LAE 治疗的 BCa 患者。患者被随机分为训练集(n=56)和内部验证集(n=24)。从 T2 加权、动态对比增强、弥散加权成像和表观弥散系数序列中提取放射组学特征。应用最小绝对值收缩和选择算子(LASSO)Cox 回归算法选择有价值的特征并构建 Rad-score。使用 Cox 比例风险模型构建 DFS 预测模型。使用 Kaplan-Meier 分析评估 Rad-score 与 DFS 的关系。建立了一个结合 Rad-score 和临床病理因素的放射组学列线图,用于个体化的 DFS 估计。
在训练集和验证集中,Rad-score 与 DFS 呈正相关(P<0.001)。在验证集中,联合 Rad-score、肿瘤病理分期(pT 分期)和脉管侵犯(LVI)的放射组学列线图在 DFS 预测方面表现优于临床病理因素列线图(C 指数,0.807;95%CI,0.713-0.901)或仅基于 Rad-score 的模型(C 指数,0.770;95%CI,0.702-0.837)。
Rad-score 是接受 PR 或 RC 加 LAE 治疗的膀胱癌患者 DFS 的独立预测因子,联合 Rad-score、pT 分期和 LVI 的放射组学列线图在个体 DFS 预测中具有更好的性能。
本研究为 PR 或 RC 后 BCa 患者的 DFS 提供了一种非侵入性、简单的个体化、精准预测方法。