Suppr超能文献

基于 MRI 的放射组学与临床病理特征相结合对早期宫颈腺癌患者进行术前预后预测:与深度学习方法的比较。

Integrating MRI-based radiomics and clinicopathological features for preoperative prognostication of early-stage cervical adenocarcinoma patients: in comparison to deep learning approach.

机构信息

Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, No.1, east Jian she Road, Zhengzhou, 450000, Henan Province, China.

Evomics Medical Technology Co., Ltd, Shanghai, China.

出版信息

Cancer Imaging. 2024 Aug 1;24(1):101. doi: 10.1186/s40644-024-00747-y.

Abstract

OBJECTIVES

The roles of magnetic resonance imaging (MRI) -based radiomics approach and deep learning approach in cervical adenocarcinoma (AC) have not been explored. Herein, we aim to develop prognosis-predictive models based on MRI-radiomics and clinical features for AC patients.

METHODS

Clinical and pathological information from one hundred and ninety-seven patients with cervical AC was collected and analyzed. For each patient, 107 radiomics features were extracted from T2-weighted MRI images. Feature selection was performed using Spearman correlation and random forest (RF) algorithms, and predictive models were built using support vector machine (SVM) technique. Deep learning models were also trained with T2-weighted MRI images and clinicopathological features through Convolutional Neural Network (CNN). Kaplan-Meier curve was analyzed using significant features. In addition, information from another group of 56 AC patients was used for the independent validation.

RESULTS

A total of 107 radiomics features and 6 clinicopathological features (age, FIGO stage, differentiation, invasion depth, lymphovascular space invasion (LVSI), and lymph node metastasis (LNM) were included in the analysis. When predicting the 3-year, 4-year, and 5-year DFS, the model trained solely on radiomics features achieved AUC values of 0.659 (95%CI: 0.620-0.716), 0.791 (95%CI: 0.603-0.922), and 0.853 (95%CI: 0.745-0.912), respectively. However, the combined model, incorporating both radiomics and clinicopathological features, outperformed the radiomics model with AUC values of 0.934 (95%CI: 0.885-0.981), 0.937 (95%CI: 0.867-0.995), and 0.916 (95%CI: 0.857-0.970), respectively. For deep learning models, the MRI-based models achieved an AUC of 0.857, 0.777 and 0.828 for 3-year DFS, 4-year DFS and 5-year DFS prediction, respectively. And the combined deep learning models got a improved performance, the AUCs were 0.903. 0.862 and 0.969. In the independent test set, the combined model achieved an AUC of 0.873, 0.858 and 0.914 for 3-year DFS, 4-year DFS and 5-year DFS prediction, respectively.

CONCLUSIONS

We demonstrated the prognostic value of integrating MRI-based radiomics and clinicopathological features in cervical adenocarcinoma. Both radiomics and deep learning models showed improved predictive performance when combined with clinical data, emphasizing the importance of a multimodal approach in patient management.

摘要

目的

磁共振成像(MRI)的基于放射组学和深度学习方法在宫颈腺癌(AC)中的作用尚未得到探索。本研究旨在建立基于 MRI 放射组学和临床特征的预测模型,用于预测 AC 患者的预后。

方法

收集并分析了 197 例宫颈 AC 患者的临床和病理信息。为每位患者从 T2 加权 MRI 图像中提取 107 个放射组学特征。使用 Spearman 相关性和随机森林(RF)算法进行特征选择,并使用支持向量机(SVM)技术构建预测模型。通过卷积神经网络(CNN),使用 T2 加权 MRI 图像和临床病理特征对深度学习模型进行训练。使用显著特征进行 Kaplan-Meier 曲线分析。此外,另一组 56 例 AC 患者的信息用于独立验证。

结果

共纳入 107 个放射组学特征和 6 个临床病理特征(年龄、FIGO 分期、分化程度、浸润深度、脉管间隙浸润(LVSI)和淋巴结转移(LNM)。在预测 3 年、4 年和 5 年无病生存(DFS)时,仅基于放射组学特征的模型的 AUC 值分别为 0.659(95%CI:0.620-0.716)、0.791(95%CI:0.603-0.922)和 0.853(95%CI:0.745-0.912)。然而,整合放射组学和临床病理特征的联合模型表现优于放射组学模型,其 AUC 值分别为 0.934(95%CI:0.885-0.981)、0.937(95%CI:0.867-0.995)和 0.916(95%CI:0.857-0.970)。对于深度学习模型,基于 MRI 的模型在预测 3 年 DFS、4 年 DFS 和 5 年 DFS 时的 AUC 值分别为 0.857、0.777 和 0.828。联合深度学习模型的表现得到了改善,AUC 值分别为 0.903、0.862 和 0.969。在独立测试集中,联合模型在预测 3 年 DFS、4 年 DFS 和 5 年 DFS 时的 AUC 值分别为 0.873、0.858 和 0.914。

结论

本研究证明了整合基于 MRI 的放射组学和临床病理特征在宫颈腺癌中的预后价值。放射组学和深度学习模型与临床数据相结合时,预测性能均有所提高,强调了在患者管理中采用多模态方法的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73c7/11292990/641fd2fc4044/40644_2024_747_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验