Suppr超能文献

人类疾病细胞和动物模型中的Sirtuin调节剂

Sirtuin Modulators in Cellular and Animal Models of Human Diseases.

作者信息

Hong Jun Young, Lin Hening

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.

Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States.

出版信息

Front Pharmacol. 2021 Sep 28;12:735044. doi: 10.3389/fphar.2021.735044. eCollection 2021.

Abstract

Sirtuins use NAD to remove various acyl groups from protein lysine residues. Through working on different substrate proteins, they display many biological functions, including regulation of cell proliferation, genome stability, metabolism, and cell migration. There are seven sirtuins in humans, SIRT1-7, each with unique enzymatic activities, regulatory mechanisms, subcellular localizations, and substrate scopes. They have been indicated in many human diseases, including cancer, neurodegeneration, microbial infection, metabolic and autoimmune diseases. Consequently, interests in development of sirtuin modulators have increased in the past decade. In this brief review, we specifically summarize genetic and pharmacological modulations of sirtuins in cancer, neurological, and cardiovascular diseases. We further anticipate this review will be helpful for scrutinizing the significance of sirtuins in the studied diseases.

摘要

沉默调节蛋白利用烟酰胺腺嘌呤二核苷酸(NAD)从蛋白质赖氨酸残基上去除各种酰基。通过作用于不同的底物蛋白,它们展现出许多生物学功能,包括调节细胞增殖、基因组稳定性、新陈代谢和细胞迁移。人类有七种沉默调节蛋白,即SIRT1 - 7,每种都具有独特的酶活性、调节机制、亚细胞定位和底物范围。它们已被证实与许多人类疾病有关,包括癌症、神经退行性疾病、微生物感染、代谢性疾病和自身免疫性疾病。因此,在过去十年中,人们对开发沉默调节蛋白调节剂的兴趣有所增加。在这篇简短的综述中,我们特别总结了沉默调节蛋白在癌症、神经和心血管疾病中的基因和药理学调节作用。我们进一步期望这篇综述将有助于审视沉默调节蛋白在所研究疾病中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc22/8505532/e1bb9562c042/fphar-12-735044-g001.jpg

相似文献

1
Sirtuin Modulators in Cellular and Animal Models of Human Diseases.
Front Pharmacol. 2021 Sep 28;12:735044. doi: 10.3389/fphar.2021.735044. eCollection 2021.
2
Sirtuin modulators: past, present, and future perspectives.
Future Med Chem. 2022 Jun;14(12):915-939. doi: 10.4155/fmc-2022-0031. Epub 2022 May 18.
3
Promising drug discovery strategies for sirtuin modulators: what lessons have we learnt?
Expert Opin Drug Discov. 2021 Aug;16(8):915-927. doi: 10.1080/17460441.2021.1915980. Epub 2021 Apr 21.
4
Structures, substrates, and regulators of Mammalian sirtuins - opportunities and challenges for drug development.
Front Pharmacol. 2012 Feb 9;3:16. doi: 10.3389/fphar.2012.00016. eCollection 2012.
5
Activation and inhibition of sirtuins: From bench to bedside.
Med Res Rev. 2025 Mar;45(2):484-560. doi: 10.1002/med.22076. Epub 2024 Aug 31.
6
An improved fluorogenic assay for SIRT1, SIRT2, and SIRT3.
Org Biomol Chem. 2016 Feb 21;14(7):2186-90. doi: 10.1039/c5ob02609a. Epub 2016 Jan 21.
7
Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
Biochemistry. 2015 May 19;54(19):3037-3050. doi: 10.1021/acs.biochem.5b00150. Epub 2015 May 4.
8
Sirtuins in Neuroendocrine Regulation and Neurological Diseases.
Front Neurosci. 2018 Oct 26;12:778. doi: 10.3389/fnins.2018.00778. eCollection 2018.
9
HPLC-Based Enzyme Assays for Sirtuins.
Methods Mol Biol. 2018;1813:225-234. doi: 10.1007/978-1-4939-8588-3_15.
10
Fluorogenic Assays for the Defatty-Acylase Activity of Sirtuins.
Methods Mol Biol. 2019;2009:129-136. doi: 10.1007/978-1-4939-9532-5_10.

引用本文的文献

1
Structural basis for sirtuin 2 activity and modulation: Current state and opportunities.
J Biol Chem. 2025 May 22;301(7):110274. doi: 10.1016/j.jbc.2025.110274.
4
Sirtuins as Players in the Signal Transduction of Flavonoids.
Int J Mol Sci. 2024 Feb 6;25(4):1956. doi: 10.3390/ijms25041956.
5
Pyruvate kinase is post-translationally regulated by sirtuin 2 in Aedes aegypti mosquitoes.
Insect Biochem Mol Biol. 2023 Nov;162:104015. doi: 10.1016/j.ibmb.2023.104015. Epub 2023 Oct 4.
6
Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage.
Transl Stroke Res. 2024 Dec;15(6):1017-1034. doi: 10.1007/s12975-023-01191-z. Epub 2023 Oct 2.
7
Novel Thiazole-Based SIRT2 Inhibitors Discovered via Molecular Modelling Studies and Enzymatic Assays.
Pharmaceuticals (Basel). 2023 Sep 18;16(9):1316. doi: 10.3390/ph16091316.
8
SIRT2 inhibition by AGK2 enhances mycobacteria-specific stem cell memory responses by modulating beta-catenin and glycolysis.
iScience. 2023 Apr 10;26(5):106644. doi: 10.1016/j.isci.2023.106644. eCollection 2023 May 19.
9
Inhibiting silence information regulator 2 and glutaminase in the amygdala can improve social behavior in autistic rats.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022 Dec 25;51(6):707-715. doi: 10.3724/zdxbyxb-2022-0183.
10
Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment.
Cell Prolif. 2023 Sep;56(9):e13448. doi: 10.1111/cpr.13448. Epub 2023 Mar 13.

本文引用的文献

1
Pharmacological Advantage of SIRT2-Selective versus pan-SIRT1-3 Inhibitors.
ACS Chem Biol. 2021 Jul 16;16(7):1266-1275. doi: 10.1021/acschembio.1c00331. Epub 2021 Jun 17.
2
The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics.
J Clin Invest. 2021 Jun 15;131(12). doi: 10.1172/JCI138926.
3
Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation.
Annu Rev Biochem. 2021 Jun 20;90:245-285. doi: 10.1146/annurev-biochem-082520-125411. Epub 2021 Apr 13.
5
Targeting SIRT1 to inhibit the proliferation of multiple myeloma cells.
Oncol Lett. 2021 Apr;21(4):306. doi: 10.3892/ol.2021.12567. Epub 2021 Feb 21.
6
Pharmacological and genetic perturbation establish SIRT5 as a promising target in breast cancer.
Oncogene. 2021 Mar;40(9):1644-1658. doi: 10.1038/s41388-020-01637-w. Epub 2021 Jan 21.
7
Sirtuin 1 inhibitor EX527 suppresses morphine-induced behavioral sensitization.
Neurosci Lett. 2021 Jan 23;744:135599. doi: 10.1016/j.neulet.2020.135599. Epub 2021 Jan 4.
8
Sirtuin 1 and 2 inhibitors enhance the inhibitory effect of sorafenib in hepatocellular carcinoma cells.
Eur J Pharmacol. 2021 Feb 5;892:173736. doi: 10.1016/j.ejphar.2020.173736. Epub 2020 Nov 18.
9
Simultaneous Inhibition of SIRT2 Deacetylase and Defatty-Acylase Activities via a PROTAC Strategy.
ACS Med Chem Lett. 2020 Sep 21;11(11):2305-2311. doi: 10.1021/acsmedchemlett.0c00423. eCollection 2020 Nov 12.
10
SIRT1 Activation by Natural Phytochemicals: An Overview.
Front Pharmacol. 2020 Aug 7;11:1225. doi: 10.3389/fphar.2020.01225. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验