Erps Timothy, Foshey Michael, Luković Mina Konaković, Shou Wan, Goetzke Hanns Hagen, Dietsch Herve, Stoll Klaus, von Vacano Bernhard, Matusik Wojciech
Computer Science and Artificial Intelligence Laboratory (CSAIL), Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
BASF SE, Advanced Materials and Systems Research, Carl Bosch Str 38, 67056 Ludwigshafen, Germany.
Sci Adv. 2021 Oct 15;7(42):eabf7435. doi: 10.1126/sciadv.abf7435.
Additive manufacturing has become one of the forefront technologies in fabrication, enabling products impossible to manufacture before. Although many materials exist for additive manufacturing, most suffer from performance trade-offs. Current materials are designed with inefficient human-driven intuition-based methods, leaving them short of optimal solutions. We propose a machine learning approach to accelerating the discovery of additive manufacturing materials with optimal trade-offs in mechanical performance. A multiobjective optimization algorithm automatically guides the experimental design by proposing how to mix primary formulations to create better performing materials. The algorithm is coupled with a semiautonomous fabrication platform to substantially reduce the number of performed experiments and overall time to solution. Without prior knowledge of the primary formulations, the proposed methodology autonomously uncovers 12 optimal formulations and enlarges the discovered performance space 288 times after only 30 experimental iterations. This methodology could be easily generalized to other material design systems and enable automated discovery.
增材制造已成为制造领域的前沿技术之一,能够制造出以前无法制造的产品。尽管存在许多用于增材制造的材料,但大多数都存在性能权衡问题。当前材料是通过低效的基于人工直觉的方法设计的,缺乏最优解决方案。我们提出一种机器学习方法,以加速发现机械性能具有最优权衡的增材制造材料。一种多目标优化算法通过提出如何混合主要配方来创建性能更好的材料,自动指导实验设计。该算法与一个半自动制造平台相结合,大幅减少了实验次数和总体求解时间。在没有主要配方先验知识的情况下,所提出的方法仅经过30次实验迭代就自主发现了12种最优配方,并将发现的性能空间扩大了288倍。这种方法可以很容易地推广到其他材料设计系统,并实现自动化发现。