Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain.
Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; Networking Research Centre, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
Acta Biomater. 2022 Jan 1;137:218-237. doi: 10.1016/j.actbio.2021.10.014. Epub 2021 Oct 13.
Osteomyelitis is an inflammatory process of bone and bone marrow that may even lead to patient death. Even though this disease is mainly caused by Gram-positive organisms, the proportion of bone infections caused by Gram-negative bacteria, such as Escherichia coli, has significantly increased in recent years. In this work, mesoporous silica nanoparticles have been employed as platform to engineer a nanomedicine able to eradicate E. coli- related bone infections. For that purpose, the nanoparticles have been loaded with moxifloxacin and further functionalized with Arabic gum and colistin (AG+CO-coated MX-loaded MSNs). The nanosystem demonstrated high affinity toward E. coli biofilm matrix, thanks to AG coating, and marked antibacterial effect because of the bactericidal effect of moxifloxacin and the disaggregating effect of colistin. AG+CO-coated MX-loaded MSNs were able to eradicate the infection developed on a trabecular bone in vitro and showed pronounced antibacterial efficacy in vivo against an osteomyelitis provoked by E. coli. Furthermore, AG+CO-coated MX-loaded MSNs were shown to be essentially non-cytotoxic with only slight effect on cell proliferation and mild hepatotoxicity, which might be attributed to the nature of both antibiotics. In view of these results, these nanoparticles may be considered as a promising treatment for bone infections caused by enterobacteria, such as E. coli, and introduce a general strategy against bone infections based on the implementation of antibiotics with different but complementary activity into a single nanocarrier. STATEMENT OF SIGNIFICANCE: In this work, we propose a methodology to address E.coli bone infections by using moxifloxacin-loaded mesoporous silica nanoparticles coated with Arabic gum containing colistin (AG+CO-coated MX-loaded MSNs). The in vitro evaluation of this nanosystem demonstrated high affinity toward E. coli biofilm matrix thanks to the Arabic gum coating, a disaggregating and antibacterial effect of colistin, and a remarkable antibiofilm action because of the bactericidal ability of moxifloxacin and colistin. This anti-E. coli capacity of AG+CO-coated MX-loaded MSNs was brought out in an in vivo rabbit model of osteomyelitis where the nanosystem was able to eradicate more than 90% of the bacterial load within the infected bone.
骨髓炎是一种骨和骨髓的炎症过程,甚至可能导致患者死亡。尽管这种疾病主要是由革兰氏阳性菌引起的,但近年来,由大肠杆菌等革兰氏阴性菌引起的骨感染比例显著增加。在这项工作中,介孔硅纳米粒子被用作平台来设计一种能够根除大肠杆菌相关骨感染的纳米药物。为此,将纳米粒子负载莫西沙星,并进一步用阿拉伯胶和粘菌素(AG+CO 涂层的 MX 负载 MSNs)进行功能化。由于 AG 涂层,纳米系统对大肠杆菌生物膜基质具有高亲和力,并由于莫西沙星的杀菌作用和粘菌素的解聚作用,具有显著的抗菌效果。AG+CO 涂层的 MX 负载 MSNs 能够消除体外小梁骨上的感染,并在体内对大肠杆菌引起的骨髓炎表现出明显的抗菌效果。此外,AG+CO 涂层的 MX 负载 MSNs 表现出基本的非细胞毒性,对细胞增殖只有轻微影响,且具有轻度的肝毒性,这可能归因于两种抗生素的性质。鉴于这些结果,这些纳米粒子可被视为治疗由肠杆菌(如大肠杆菌)引起的骨感染的一种有前途的方法,并提出了一种基于将具有不同但互补活性的抗生素纳入单个纳米载体的针对骨感染的一般策略。
意义声明:在这项工作中,我们提出了一种使用负载莫西沙星的介孔硅纳米粒子并包覆阿拉伯胶含粘菌素(AG+CO 涂层的 MX 负载 MSNs)的方法来解决大肠杆菌骨感染的问题。该纳米系统的体外评价表明,由于阿拉伯胶的包覆,对大肠杆菌生物膜基质具有高亲和力,粘菌素的解聚和抗菌作用,以及莫西沙星和粘菌素的杀菌能力,具有显著的抗生物膜作用。AG+CO 涂层的 MX 负载 MSNs 在大肠杆菌感染的兔模型中表现出了抗大肠杆菌的能力,该纳米系统能够在感染的骨骼中消除超过 90%的细菌负荷。
Adv Healthc Mater. 2013-3-25
Colloids Surf B Biointerfaces. 2020-6
Nanomaterials (Basel). 2025-2-13
Chem Mater. 2023-10-16
Pharmaceuticals (Basel). 2023-7-5
Polymers (Basel). 2023-3-9