文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于治疗后肿瘤标本的通路特征可预测抗 PD-1 阻断治疗转移性黑色素瘤的疗效。

Pathway signatures derived from on-treatment tumor specimens predict response to anti-PD1 blockade in metastatic melanoma.

机构信息

Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ, 07102, USA.

Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.

出版信息

Nat Commun. 2021 Oct 15;12(1):6023. doi: 10.1038/s41467-021-26299-4.


DOI:10.1038/s41467-021-26299-4
PMID:34654806
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8519947/
Abstract

Both genomic and transcriptomic signatures have been developed to predict responses of metastatic melanoma to immune checkpoint blockade (ICB) therapies; however, most of these signatures are derived from pre-treatment biopsy samples. Here, we build pathway-based super signatures in pre-treatment (PASS-PRE) and on-treatment (PASS-ON) tumor specimens based on transcriptomic data and clinical information from a large dataset of metastatic melanoma treated with anti-PD1-based therapies as the training set. Both PASS-PRE and PASS-ON signatures are validated in three independent datasets of metastatic melanoma as the validation set, achieving area under the curve (AUC) values of 0.45-0.69 and 0.85-0.89, respectively. We also combine all test samples and obtain AUCs of 0.65 and 0.88 for PASS-PRE and PASS-ON signatures, respectively. When compared with existing signatures, the PASS-ON signature demonstrates more robust and superior predictive performance across all four datasets. Overall, we provide a framework for building pathway-based signatures that is highly and accurately predictive of response to anti-PD1 therapies based on on-treatment tumor specimens. This work would provide a rationale for applying pathway-based signatures derived from on-treatment tumor samples to predict patients' therapeutic response to ICB therapies.

摘要

基于基因组和转录组特征已被开发用于预测转移性黑色素瘤对免疫检查点阻断 (ICB) 治疗的反应;然而,大多数这些特征都来自于治疗前的活检样本。在这里,我们根据大型转移性黑色素瘤数据集的转录组数据和接受抗 PD1 治疗的患者的临床信息,在治疗前 (PASS-PRE) 和治疗中 (PASS-ON) 的肿瘤标本中构建基于途径的超级特征作为训练集。PASS-PRE 和 PASS-ON 特征均在三个转移性黑色素瘤的独立数据集作为验证集进行验证,在验证集中分别获得 0.45-0.69 和 0.85-0.89 的曲线下面积 (AUC) 值。我们还将所有测试样本合并,分别得到 PASS-PRE 和 PASS-ON 特征的 AUC 为 0.65 和 0.88。与现有特征相比,PASS-ON 特征在所有四个数据集均表现出更稳健和优越的预测性能。总体而言,我们提供了一个基于途径的特征构建框架,该框架可高度准确地预测基于治疗中肿瘤标本的抗 PD1 治疗反应。这项工作将为应用基于治疗中肿瘤样本的途径特征来预测患者对 ICB 治疗的治疗反应提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/d6d3abbb0f5b/41467_2021_26299_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/a12ebb3b2ec7/41467_2021_26299_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/ab7b890c2ce1/41467_2021_26299_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/34ef1b916006/41467_2021_26299_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/3f32b8d29ecd/41467_2021_26299_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/a3219194f701/41467_2021_26299_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/f676eb3b7b4b/41467_2021_26299_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/d6d3abbb0f5b/41467_2021_26299_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/a12ebb3b2ec7/41467_2021_26299_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/ab7b890c2ce1/41467_2021_26299_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/34ef1b916006/41467_2021_26299_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/3f32b8d29ecd/41467_2021_26299_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/a3219194f701/41467_2021_26299_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/f676eb3b7b4b/41467_2021_26299_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba7/8519947/d6d3abbb0f5b/41467_2021_26299_Fig7_HTML.jpg

相似文献

[1]
Pathway signatures derived from on-treatment tumor specimens predict response to anti-PD1 blockade in metastatic melanoma.

Nat Commun. 2021-10-15

[2]
Functional Gene Expression Signatures from On-Treatment Tumor Specimens Predict Anti-PD1 Blockade Response in Metastatic Melanoma.

Biomolecules. 2022-12-27

[3]
Immunogenic cell death signatures from on-treatment tumor specimens predict immune checkpoint therapy response in metastatic melanoma.

Sci Rep. 2024-10-2

[4]
Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma.

Nat Med. 2019-12-2

[5]
Size matters: integrating tumour volume and immune activation signatures predicts immunotherapy response.

Mol Cancer. 2024-10-11

[6]
Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma.

Nat Med. 2018-8-20

[7]
Inflammatory response signature score model for predicting immunotherapy response and pan-cancer prognosis.

Comput Struct Biotechnol J. 2023-12-6

[8]
Innate immune checkpoint inhibitor resistance is associated with melanoma sub-types exhibiting invasive and de-differentiated gene expression signatures.

Front Immunol. 2022

[9]
Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma.

Clin Cancer Res. 2020-7-15

[10]
Immune-Related Gene Expression Profiling After PD-1 Blockade in Non-Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma.

Cancer Res. 2017-5-9

引用本文的文献

[1]
Adaptive individualized gene pair signatures distinguishing melanoma and predicting response to immune checkpoint blockade.

iScience. 2025-8-8

[2]
Evaluating Gene Fusions as Prognostic Biomarkers and Therapeutic Targets in Immune Checkpoint Blockade-Treated Advanced Melanoma: A Retrospective Analysis.

Cancer Res Commun. 2025-8-1

[3]
Machine Learning-Based Prognostic Signature in Breast Cancer: Regulatory T Cells, Stemness, and Deep Learning for Synergistic Drug Discovery.

Int J Mol Sci. 2025-7-21

[4]
Immunometabolism signature derived from on-treatment tumor specimens predicts immune checkpoint blockade response in metastatic melanoma.

Discov Oncol. 2025-7-1

[5]
Tumor antigens preferentially derive from unmutated genomic sequences in melanoma and non-small cell lung cancer.

Nat Cancer. 2025-5-22

[6]
Alterations in PD-L1 succinylation shape anti-tumor immune responses in melanoma.

Nat Genet. 2025-3

[7]
Differential Infiltration of Key Immune T-Cell Populations Across Malignancies Varying by Immunogenic Potential and the Likelihood of Response to Immunotherapy.

Cells. 2024-12-3

[8]
Protocol for using scCURE to construct an immunotherapy outcome prediction model.

STAR Protoc. 2024-12-20

[9]
Immunogenic cell death signatures from on-treatment tumor specimens predict immune checkpoint therapy response in metastatic melanoma.

Sci Rep. 2024-10-2

[10]
Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy.

Cancer Control. 2024

本文引用的文献

[1]
Reply to: "Inconsistent prediction capability of ImmuneCells.Sig across different RNA-seq datasets".

Nat Commun. 2021-7-7

[2]
Inconsistent prediction capability of ImmuneCells.Sig across different RNA-seq datasets.

Nat Commun. 2021-7-7

[3]
A gene expression signature of TREM2 macrophages and γδ T cells predicts immunotherapy response.

Nat Commun. 2020-10-8

[4]
The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies.

Nat Immunol. 2020-11

[5]
A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma.

Nat Med. 2020-8-10

[6]
Predicting and affecting response to cancer therapy based on pathway-level biomarkers.

Nat Commun. 2020-7-3

[7]
Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition.

Nat Commun. 2020-4-20

[8]
Peripheral CD8 T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma.

Nat Med. 2020-2-10

[9]
Reply to: 'IMPRES does not reproducibly predict response to immune checkpoint blockade therapy in metastatic melanoma'.

Nat Med. 2019-12

[10]
IMPRES does not reproducibly predict response to immune checkpoint blockade therapy in metastatic melanoma.

Nat Med. 2019-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索