Suppr超能文献

控制风险回归中的测量误差:校正技术比较。

Measurement errors in control risk regression: A comparison of correction techniques.

机构信息

Department of Statistical Sciences, University of Padova, Padova, Italy.

出版信息

Stat Med. 2022 Jan 15;41(1):163-179. doi: 10.1002/sim.9228. Epub 2021 Oct 15.

Abstract

Control risk regression is a diffuse approach for meta-analysis about the effectiveness of a treatment, relating the measure of risk with which the outcome occurs in the treated group to that in the control group. The severity of illness is a source of between-study heterogeneity that can be difficult to measure. It can be approximated by the rate of events in the control group. Since the estimate is a surrogate for the underlying risk, it is prone to measurement error. Correction methods are necessary to provide reliable inference. This article illustrates the extent of measurement error effects under different scenarios, including departures from the classical normality assumption for the control risk distribution. The performance of different measurement error corrections is examined. Attention will be paid to likelihood-based structural methods assuming a distribution for the control risk measure and to functional methods avoiding the assumption, namely, a simulation-based method and two score function methods. Advantages and limits of the approaches are evaluated through simulation. In case of large heterogeneity, structural approaches are preferable to score methods, while score methods perform better for small heterogeneity and small sample size. The simulation-based approach has a satisfactory behavior whichever the examined scenario, with no convergence issues. The methods are applied to a meta-analysis about the association between diabetes and risk of Parkinson disease. The study intends to make researchers aware of the measurement error problem occurring in control risk regression and lead them to the use of appropriate correction techniques to prevent fallacious conclusions.

摘要

控制风险回归是一种用于治疗效果荟萃分析的弥漫性方法,它将治疗组中结局发生的风险度量与对照组中的风险度量联系起来。疾病严重程度是研究间异质性的一个来源,难以衡量。它可以通过对照组中的事件发生率来近似。由于估计值是潜在风险的替代物,因此容易受到测量误差的影响。需要校正方法来提供可靠的推断。本文在不同情况下说明了测量误差效应的程度,包括控制风险分布偏离经典正态性假设的情况。研究了不同测量误差校正方法的性能。将关注基于似然的结构方法,这些方法假设控制风险度量的分布,以及避免假设的功能方法,即基于模拟的方法和两种评分函数方法。通过模拟评估方法的优缺点和局限性。在存在较大异质性的情况下,结构方法优于评分方法,而在异质性较小和样本量较小时,评分方法的表现更好。无论检查的情况如何,基于模拟的方法都具有令人满意的行为,不存在收敛问题。该方法应用于一项关于糖尿病与帕金森病风险之间关联的荟萃分析。本研究旨在使研究人员意识到控制风险回归中存在的测量误差问题,并促使他们使用适当的校正技术来防止错误的结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fb7/9292416/b5b5ce884dea/SIM-41-163-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验