Suppr超能文献

一种基于 EEG 的神经疾病识别的新型计算机辅助诊断框架。

A novel computer-aided diagnosis framework for EEG-based identification of neural diseases.

机构信息

School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China; Department of Electrical Engineering, The University of Lahore, Lahore, 54000, Pakistan.

Department of Biomedical Engineering, Islamic Azad University, Tehran, 1411718541, Iran.

出版信息

Comput Biol Med. 2021 Nov;138:104922. doi: 10.1016/j.compbiomed.2021.104922. Epub 2021 Oct 12.

Abstract

Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B-PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system.

摘要

近年来,脑电图(EEG)信号分类的研究主要集中在特定领域的方法上,这阻碍了算法的跨学科能力。本研究提出了一种新的计算机辅助诊断(CAD)系统,用于在统一的顺序框架下对两个不同的 EEG 领域进行分类。考虑到两种神经疾病的主要动机是开发一种用于 EEG 分类的统一算法。本研究的主要贡献有五个方面。首先,在经验小波变换的帮助下,将 EEG 信号分解为 10 个固有模式函数(IMF)。其次,绘制了一个新的二维(2D)IMF 模型,以可视化 EEG 信号的复杂性。第三,提取了几个新的几何特征来分析动态和混沌本质。第四,通过二进制粒子群优化算法(B-PSO)选择显著特征。第五,将选择的特征输入到 k-最近邻分类器中,用于 EEG 信号分类。所有实验均在一个抑郁症和两个癫痫 EEG 数据集上以留一交叉验证策略执行。所提出的 CAD 系统在抑郁症检测中提供了 93.35%的平均分类准确率,在正常对发作和发作对发作的分类中分别为 99.33%和 97.33%。总体经验分析证实,与现有特定领域的方法相比,所提出的 CAD 在分类准确率和多角色适应性方面表现更好,因此可以作为一种有效的自动神经康复系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验