School of Computer Science, South China Normal University, Guangzhou, China.
College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China.
BMC Med Inform Decis Mak. 2022 Aug 6;22(1):209. doi: 10.1186/s12911-022-01956-w.
Major depressive disorder (MDD) is a common mental illness, characterized by persistent depression, sadness, despair, etc., troubling people's daily life and work seriously.
In this work, we present a novel automatic MDD detection framework based on EEG signals. First of all, we derive highly MDD-correlated features, calculating the ratio of extracted features from EEG signals at frequency bands between [Formula: see text] and [Formula: see text]. Then, a two-stage feature selection method named PAR is presented with the sequential combination of Pearson correlation coefficient (PCC) and recursive feature elimination (RFE), where the advantages lie in minimizing the feature searching space. Finally, we employ widely used machine learning methods of support vector machine (SVM), logistic regression (LR), and linear regression (LNR) for MDD detection with the merit of feature interpretability.
Experiment results show that our proposed MDD detection framework achieves competitive results. The accuracy and [Formula: see text] score are up to 0.9895 and 0.9846, respectively. Meanwhile, the regression determination coefficient [Formula: see text] for MDD severity assessment is up to 0.9479. Compared with existing MDD detection methods with the best accuracy of 0.9840 and [Formula: see text] score of 0.97, our proposed framework achieves the state-of-the-art MDD detection performance.
Development of this MDD detection framework can be potentially deployed into a medical system to aid physicians to screen out MDD patients.
重度抑郁症(MDD)是一种常见的精神疾病,其特征为持续性抑郁、悲伤、绝望等,严重困扰着人们的日常生活和工作。
在这项工作中,我们提出了一种基于脑电信号的新型 MDD 自动检测框架。首先,我们推导出与 MDD 高度相关的特征,计算脑电信号在[Formula: see text]和[Formula: see text]频段之间提取特征的比率。然后,提出了一种名为 PAR 的两阶段特征选择方法,该方法采用 Pearson 相关系数(PCC)和递归特征消除(RFE)的顺序组合,其优点在于最小化特征搜索空间。最后,我们采用支持向量机(SVM)、逻辑回归(LR)和线性回归(LNR)等广泛使用的机器学习方法进行 MDD 检测,具有特征可解释性的优点。
实验结果表明,我们提出的 MDD 检测框架取得了有竞争力的结果。准确性和[Formula: see text]评分分别高达 0.9895 和 0.9846。同时,用于 MDD 严重程度评估的回归确定系数[Formula: see text]高达 0.9479。与具有最佳准确性 0.9840 和[Formula: see text]评分 0.97 的现有 MDD 检测方法相比,我们提出的框架实现了最先进的 MDD 检测性能。
该 MDD 检测框架的开发可潜在地应用于医疗系统,以帮助医生筛选出 MDD 患者。