文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用卷积神经网络从 Tc-99m MAA SPECT/CT 图像中自动分割肺、肝和肝肿瘤,用于 Y-90 放射性栓塞。

Automated segmentation of lung, liver, and liver tumors from Tc-99m MAA SPECT/CT images for Y-90 radioembolization using convolutional neural networks.

机构信息

Department of Radiological Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.

Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21218, USA.

出版信息

Med Phys. 2021 Dec;48(12):7877-7890. doi: 10.1002/mp.15303. Epub 2021 Oct 31.


DOI:10.1002/mp.15303
PMID:34657293
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9298038/
Abstract

PURPOSE: Y selective internal radiation therapy (SIRT) has become a safe and effective treatment option for liver cancer. However, segmentation of target and organ-at-risks is labor-intensive and time-consuming in Y SIRT planning. In this study, we developed a convolutional neural network (CNN)-based method for automated lungs, liver, and tumor segmentation on Tc-MAA SPECT/CT images for Y SIRT planning. METHODS: Tc-MAA SPECT/CT images and corresponding clinical segmentations were retrospectively collected from 56 patients who underwent Y SIRT. The collected data were used to train three CNN-based segmentation algorithms for lungs, liver, and tumor segmentation. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), surface DSC, and average symmetric surface distance (ASSD). Dosimetric parameters (volume, counts, and lung shunt fraction) were measured from the segmentation results and were compared with clinical reference segmentations. RESULTS: The evaluation results show that the method can accurately segment lungs, liver, and tumor with median [interquartile range] DSCs of 0.98 [0.97-0.98], 0.91 [0.83-0.93], and 0.85 [0.71-0.88]; surface DSCs of 0.99 [0.97-0.99], 0.86 [0.77-0.93], and 0.85 [0.62-0.93], and ASSDs of 0.91 [0.69-1.5], 4.8 [2.6-8.4], and 4.7 [3.5-9.2] mm, respectively. Dosimetric parameters from the three segmentation networks show relationship with those from the reference segmentations. The overall segmentation took about 1 min per patient on an NVIDIA RTX-2080Ti GPU. CONCLUSION: This work presents CNN-based algorithms to segment lungs, liver, and tumor from Tc-MAA SPECT/CT images. The results demonstrated the potential of the proposed CNN-based segmentation method for assisting Y SIRT planning while drastically reducing operator time.

摘要

目的:Y 选择性内放射治疗(SIRT)已成为肝癌安全有效的治疗选择。然而,Y SIRT 计划中的目标和危险器官的分割是劳动密集型且耗时的。在这项研究中,我们开发了一种基于卷积神经网络(CNN)的方法,用于在 Y SIRT 计划中对 Tc-MAA SPECT/CT 图像进行自动肺部、肝脏和肿瘤分割。

方法:回顾性收集了 56 例接受 Y SIRT 的患者的 Tc-MAA SPECT/CT 图像和相应的临床分割。所收集的数据用于训练三个基于 CNN 的分割算法,用于肺部、肝脏和肿瘤分割。使用 Dice 相似系数(DSC)、表面 DSC 和平均对称表面距离(ASSD)评估分割性能。从分割结果中测量了剂量学参数(体积、计数和肺分流分数),并与临床参考分割进行了比较。

结果:评估结果表明,该方法可以准确地分割肺部、肝脏和肿瘤,中位数[四分位距] DSCs 分别为 0.98[0.97-0.98]、0.91[0.83-0.93]和 0.85[0.71-0.88];表面 DSCs 分别为 0.99[0.97-0.99]、0.86[0.77-0.93]和 0.85[0.62-0.93],ASSD 分别为 0.91[0.69-1.5]、4.8[2.6-8.4]和 4.7[3.5-9.2]mm。三个分割网络的剂量学参数与参考分割的参数具有相关性。在 NVIDIA RTX-2080Ti GPU 上,每位患者的整体分割时间约为 1 分钟。

结论:本研究提出了基于 CNN 的算法,用于从 Tc-MAA SPECT/CT 图像中分割肺部、肝脏和肿瘤。结果表明,所提出的基于 CNN 的分割方法具有辅助 Y SIRT 计划的潜力,同时大大减少了操作人员的时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/4b77435fc9aa/MP-48-7877-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/af6ba45434f6/MP-48-7877-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/620afe39d33d/MP-48-7877-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/c7e61bb2a12b/MP-48-7877-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/d397c28209f9/MP-48-7877-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/4b77435fc9aa/MP-48-7877-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/af6ba45434f6/MP-48-7877-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/620afe39d33d/MP-48-7877-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/c7e61bb2a12b/MP-48-7877-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/d397c28209f9/MP-48-7877-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6db/9298038/4b77435fc9aa/MP-48-7877-g002.jpg

相似文献

[1]
Automated segmentation of lung, liver, and liver tumors from Tc-99m MAA SPECT/CT images for Y-90 radioembolization using convolutional neural networks.

Med Phys. 2021-12

[2]
Quantification of liver-Lung shunt fraction on 3D SPECT/CT images for selective internal radiation therapy of liver cancer using CNN-based segmentations and non-rigid registration.

Comput Methods Programs Biomed. 2023-5

[3]
Comparison of perfused volume segmentation between cone-beam CT and Tc-MAA SPECT/CT for treatment dosimetry before selective internal radiation therapy using Y-glass microspheres.

Diagn Interv Imaging. 2021-1

[4]
Comparison of absorbed doses to the tumoral and non-tumoral liver in HCC patients undergoing Tc-MAA and Y-microspheres radioembolization.

Ann Nucl Med. 2024-3

[5]
Tc-macroaggregated albumin SPECT/CT predictive dosimetry and dose-response relationship in uveal melanoma liver metastases treated with first-line selective internal radiation therapy.

Sci Rep. 2023-8-12

[6]
Calculation of lung mean dose and quantification of error for Y-microsphere radioembolization using Tc-MAA SPECT/CT and diagnostic chest CT.

Med Phys. 2019-6-11

[7]
PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on (99m)Tc-MAA Imaging and Correlation With Treatment Efficacy.

Medicine (Baltimore). 2015-6

[8]
SPECT and CT misregistration reduction in [Tc]Tc-MAA SPECT/CT for precision liver radioembolization treatment planning.

Eur J Nucl Med Mol Imaging. 2023-7

[9]
3D image-based dosimetry for Yttrium-90 radioembolization of hepatocellular carcinoma: Impact of imaging method on absorbed dose estimates.

Phys Med. 2020-12

[10]
99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization.

J Nucl Med. 2013-6-7

引用本文的文献

[1]
Effects of a deep learning-based image quality enhancement method on a digital-BGO PET/CT system for F-FDG whole-body examination.

EJNMMI Phys. 2025-3-28

[2]
A paired multi-scale attention network for liver tumor segmentation in 99mTc-MAA SPECT/CT imaging.

Sci Rep. 2025-3-23

[3]
Machine-learning based quantification of lung shunt fraction from 99mTc-MAA SPECT/CT for selective internal radiation therapy of liver tumors using TriDFusion (3DF).

EJNMMI Phys. 2025-3-11

[4]
New frontiers in radioembolization.

Ther Adv Med Oncol. 2024-9-30

[5]
Applications of artificial intelligence in interventional oncology: An up-to-date review of the literature.

Jpn J Radiol. 2025-2

[6]
Training robust T1-weighted magnetic resonance imaging liver segmentation models using ensembles of datasets with different contrast protocols and liver disease etiologies.

Sci Rep. 2024-9-9

[7]
Quantitative analysis of artificial intelligence on liver cancer: A bibliometric analysis.

Front Oncol. 2023-2-16

[8]
Technological Advancements in Interventional Oncology.

Diagnostics (Basel). 2023-1-7

本文引用的文献

[1]
Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study.

J Med Internet Res. 2021-7-12

[2]
Multi-modal image analysis for semi-automatic segmentation of the total liver and liver arterial perfusion territories for radioembolization.

EJNMMI Res. 2019-2-20

[3]
Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.

Biomed Eng Online. 2019-1-3

[4]
HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation.

IEEE Trans Med Imaging. 2018-10-30

[5]
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2018-9-12

[6]
Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks.

IEEE Trans Med Imaging. 2018-2-14

[7]
Radiation Segmentectomy versus Selective Chemoembolization in the Treatment of Early-Stage Hepatocellular Carcinoma.

J Vasc Interv Radiol. 2018-1

[8]
3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study.

Neuroimage. 2017-4-24

[9]
Automatic liver segmentation on Computed Tomography using random walkers for treatment planning.

EXCLI J. 2016-8-10

[10]
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2017-1-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索