文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Automatic liver segmentation on Computed Tomography using random walkers for treatment planning.

作者信息

Moghbel Mehrdad, Mashohor Syamsiah, Mahmud Rozi, Saripan M Iqbal Bin

机构信息

Department of Computer & Communication Systems, Faculty of Engineering, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

Cancer Resource & Education Center, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

出版信息

EXCLI J. 2016 Aug 10;15:500-517. doi: 10.17179/excli2016-473. eCollection 2016.


DOI:10.17179/excli2016-473
PMID:28096782
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5225683/
Abstract

Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. To achieve a more accurate segmentation, a random walker based framework is proposed that can segment contrast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the liver dome is automatically detected thus eliminating the need for manual initialization. The computational requirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing random walker method. The proposed method was able to achieve one of the highest accuracies reported in the literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segmenting the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/d1e28a2728d2/EXCLI-15-500-g-010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/948f517b9469/EXCLI-15-500-t-001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/7770b32428a6/EXCLI-15-500-t-002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/d3cfbf9b0e55/EXCLI-15-500-t-003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/beb20f290e83/EXCLI-15-500-g-001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/5345daae516d/EXCLI-15-500-g-002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/4c07f2f95dc6/EXCLI-15-500-g-003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/7f94210ba9eb/EXCLI-15-500-g-004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/8a700f588c9d/EXCLI-15-500-g-005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/ec7f534426e0/EXCLI-15-500-g-006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/cdb2fd3701bf/EXCLI-15-500-g-007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/ef71780ff1ae/EXCLI-15-500-g-008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/f89bf500e02c/EXCLI-15-500-g-009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/d1e28a2728d2/EXCLI-15-500-g-010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/948f517b9469/EXCLI-15-500-t-001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/7770b32428a6/EXCLI-15-500-t-002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/d3cfbf9b0e55/EXCLI-15-500-t-003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/beb20f290e83/EXCLI-15-500-g-001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/5345daae516d/EXCLI-15-500-g-002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/4c07f2f95dc6/EXCLI-15-500-g-003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/7f94210ba9eb/EXCLI-15-500-g-004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/8a700f588c9d/EXCLI-15-500-g-005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/ec7f534426e0/EXCLI-15-500-g-006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/cdb2fd3701bf/EXCLI-15-500-g-007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/ef71780ff1ae/EXCLI-15-500-g-008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/f89bf500e02c/EXCLI-15-500-g-009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc7/5225683/d1e28a2728d2/EXCLI-15-500-g-010.jpg

相似文献

[1]
Automatic liver segmentation on Computed Tomography using random walkers for treatment planning.

EXCLI J. 2016-8-10

[2]
Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring.

EXCLI J. 2016-6-27

[3]
Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

Med Phys. 2017-10-23

[4]
3D liver segmentation using multiple region appearances and graph cuts.

Med Phys. 2015-12

[5]
Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.

Phys Med Biol. 2017-1-7

[6]
Automatic liver segmentation by integrating fully convolutional networks into active contour models.

Med Phys. 2019-8-16

[7]
3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy -Means and Graph Cuts.

Biomed Res Int. 2017-9-26

[8]
Efficient liver segmentation in CT images based on graph cuts and bottleneck detection.

Phys Med. 2016-11

[9]
Toward accurate tooth segmentation from computed tomography images using a hybrid level set model.

Med Phys. 2015-1

[10]
Automatic and hierarchical segmentation of the human skeleton in CT images.

Phys Med Biol. 2017-4-7

引用本文的文献

[1]
A pipeline for automated deep learning liver segmentation (PADLLS) from contrast enhanced CT exams.

Sci Rep. 2022-9-22

[2]
A Lightweight Convolutional Neural Network Model for Liver Segmentation in Medical Diagnosis.

Comput Intell Neurosci. 2022

[3]
Efficient Liver Segmentation from Computed Tomography Images Using Deep Learning.

Comput Intell Neurosci. 2022

[4]
Automated segmentation of lung, liver, and liver tumors from Tc-99m MAA SPECT/CT images for Y-90 radioembolization using convolutional neural networks.

Med Phys. 2021-12

[5]
Atlas-based liver segmentation for nonhuman primate research.

Int J Comput Assist Radiol Surg. 2020-10

[6]
Channel-Unet: A Spatial Channel-Wise Convolutional Neural Network for Liver and Tumors Segmentation.

Front Genet. 2019-11-26

[7]
Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using multi-phase abdomen CT.

Int J Comput Assist Radiol Surg. 2019-5-6

[8]
Multi-modal image analysis for semi-automatic segmentation of the total liver and liver arterial perfusion territories for radioembolization.

EJNMMI Res. 2019-2-20

[9]
Highlight report: The pseudolobule in liver fibrosis.

EXCLI J. 2017-12-20

本文引用的文献

[1]
Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring.

EXCLI J. 2016-6-27

[2]
Automatic liver contouring for radiotherapy treatment planning.

Phys Med Biol. 2015-10-7

[3]
Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.

Med Image Anal. 2015-8

[4]
Adaptive Mesh Expansion Model (AMEM) for liver segmentation from CT image.

PLoS One. 2015-3-13

[5]
A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning.

Med Image Anal. 2014-10-23

[6]
A low-interaction automatic 3D liver segmentation method using computed tomography for selective internal radiation therapy.

Biomed Res Int. 2014

[7]
A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images.

Med Image Anal. 2013-10-17

[8]
A graph-theoretic approach for segmentation of PET images.

Annu Int Conf IEEE Eng Med Biol Soc. 2011

[9]
Fast random walker with priors using precomputation for interactive medical image segmentation.

Med Image Comput Comput Assist Interv. 2010

[10]
Improving low-dose abdominal CT images by Weighted Intensity Averaging over Large-scale Neighborhoods.

Eur J Radiol. 2010-8-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索