Suppr超能文献

蛋白质组学及其在乳腺癌中的应用。

Proteomics and its applications in breast cancer.

作者信息

Neagu Anca-Narcisa, Whitham Danielle, Buonanno Emma, Jenkins Avalon, Alexa-Stratulat Teodora, Tamba Bogdan Ionel, Darie Costel C

机构信息

Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University Potsdam, NY 13699-5810, USA.

Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași Carol I bvd. No. 22, Iași 700505, Romania.

出版信息

Am J Cancer Res. 2021 Sep 15;11(9):4006-4049. eCollection 2021.

Abstract

Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.

摘要

乳腺癌是一种独特、多面且多变的疾病,对于高度集成的精准诊断和个性化肿瘤医学新时代而言,它是一项永恒的挑战。除了传统的单组学领域(如基因组学、表观基因组学、转录组学和代谢组学)以及多组学贡献(蛋白质基因组学、蛋白质转录组学或生殖组学)之外,一些新的“组学”方法和令人兴奋的蛋白质组学子领域正在促进对乳腺癌的基础和深入理解:表型组学/细胞组学、连接组学和相互作用组学、分泌组学、基质组学、外泌体组学、血管组学、伴侣蛋白组学和表观伴侣蛋白组学、磷酸蛋白质组学、泛素组学、金属蛋白质组学、末端组学、降解组学和元降解组学、黏附组学、应激组学、微生物组学、免疫组学、唾液组学、材料组学和其他生物组学。在整个极其复杂的肿瘤发生过程中,本综述构建了一个乳腺癌细胞连续体概念(BCCCC),作为一种时空整体方法,因为乳腺癌代表了一个复杂的级联过程,依次包括异质性肿瘤细胞群和癌症相关细胞群,反映了癌症从“驱动突变”和乳腺原发性肿瘤形成,通过循环肿瘤细胞群,向不同组织和器官中的远处继发性肿瘤发展的过程。这个BCCCC得到了乳腺癌蛋白质组连续体概念(BCPCC)的广泛支持,其中肿瘤细胞和肿瘤相关细胞的每种表型都由通过复杂蛋白质组学方法在实体和液体微创活检中检测到的不断变化和适应性的蛋白质组图谱来表征。这样的图谱首先从不同肿瘤细胞群和癌症相关细胞的蛋白质组景观开始构建,随后分析参与上皮-间质转化和血管内渗的蛋白质生物标志物、循环肿瘤细胞蛋白质组学,最后分析突出血管外渗和远处转移侵袭的蛋白质生物标志物。蛋白质组学技术正在乳腺癌诊断、预后和预测生物标志物的发现与验证方面产生重要数据,在蛋白质组水平检测基因畸变,描述功能和调控途径,并强调人体组织、生物体液、细胞系和动物模型中的特定蛋白质和肽图谱。此外,蛋白质组学可以识别不同的乳腺癌亚型以及特定的蛋白质和蛋白质变体表达,可以在细胞和组织水平评估癌症治疗的疗效,甚至可以在临床研究中识别新的治疗靶点蛋白。

相似文献

1
Proteomics and its applications in breast cancer.
Am J Cancer Res. 2021 Sep 15;11(9):4006-4049. eCollection 2021.
2
Omics-Based Investigations of Breast Cancer.
Molecules. 2023 Jun 14;28(12):4768. doi: 10.3390/molecules28124768.
3
Tumor-on-chip platforms for breast cancer continuum concept modeling.
Front Bioeng Biotechnol. 2024 Oct 2;12:1436393. doi: 10.3389/fbioe.2024.1436393. eCollection 2024.
4
"Omics" in pharmaceutical research: overview, applications, challenges, and future perspectives.
Chin J Nat Med. 2015 Jan;13(1):3-21. doi: 10.1016/S1875-5364(15)60002-4.
5
Salivary Biomarkers in Breast Cancer: From Salivaomics to Salivaoncoomics.
Front Biosci (Landmark Ed). 2024 Jul 17;29(7):253. doi: 10.31083/j.fbl2907253.
6
[OMICS and biomarkers of glial tumors].
Rev Neurol (Paris). 2011 Oct;167(10):691-8. doi: 10.1016/j.neurol.2011.07.007. Epub 2011 Sep 1.
7
High-throughput «Omics» technologies: New tools for the study of triple-negative breast cancer.
Cancer Lett. 2016 Nov 1;382(1):77-85. doi: 10.1016/j.canlet.2016.03.001. Epub 2016 Mar 7.
8
Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications.
J Exp Clin Cancer Res. 2022 Sep 1;41(1):265. doi: 10.1186/s13046-022-02476-1.
10
Multiomics insights on the onset, progression, and metastatic evolution of breast cancer.
Front Oncol. 2023 Dec 19;13:1292046. doi: 10.3389/fonc.2023.1292046. eCollection 2023.

引用本文的文献

2
Metabolomics in Breast Cancer: From Biomarker Discovery to Personalized Medicine.
Metabolites. 2025 Jun 23;15(7):428. doi: 10.3390/metabo15070428.
3
Tumor-Associated Macrophage in Breast Tumor Microenvironment.
Int J Mol Sci. 2025 Jun 21;26(13):5973. doi: 10.3390/ijms26135973.
5
Targeting the Enhanced Sensitivity of Radiotherapy in Cancer: Mechanisms, Applications, and Challenges.
MedComm (2020). 2025 May 15;6(6):e70202. doi: 10.1002/mco2.70202. eCollection 2025 Jun.
6
Top-Down Proteomic Profiling of Protein Corona by High-Throughput Capillary Isoelectric Focusing-Mass Spectrometry.
J Am Soc Mass Spectrom. 2025 Apr 2;36(4):778-786. doi: 10.1021/jasms.4c00463. Epub 2025 Mar 2.
7
Exploring Molecular Alterations in Breast Cancer Among Indian Women Using Label-Free Quantitative Serum Proteomics.
Biochem Res Int. 2024 Nov 28;2024:5584607. doi: 10.1155/bri/5584607. eCollection 2024.
9
Metabolic Profiling of Breast Cancer Cell Lines: Unique and Shared Metabolites.
Int J Mol Sci. 2025 Jan 24;26(3):969. doi: 10.3390/ijms26030969.

本文引用的文献

1
Tumor Connectomics: Mapping the Intra-Tumoral Complex Interaction Network Using Machine Learning.
Cancers (Basel). 2022 Mar 14;14(6):1481. doi: 10.3390/cancers14061481.
2
Unraveling the molecular mechanisms between inflammation and tumor angiogenesis.
Am J Cancer Res. 2021 Feb 1;11(2):301-317. eCollection 2021.
3
The Role of Exosomes in the Female Reproductive System and Breast Cancers.
Onco Targets Ther. 2020 Dec 8;13:12567-12586. doi: 10.2147/OTT.S281909. eCollection 2020.
4
AlphaB-crystallin and breast cancer: role and possible therapeutic strategies.
Cell Stress Chaperones. 2021 Jan;26(1):19-28. doi: 10.1007/s12192-020-01175-0. Epub 2020 Oct 28.
6
Calcium-Binding Protein S100P Promotes Tumor Progression but Enhances Chemosensitivity in Breast Cancer.
Front Oncol. 2020 Sep 15;10:566302. doi: 10.3389/fonc.2020.566302. eCollection 2020.
7
Prevalence and clinical relevance of tumor-associated tissue eosinophilia (TATE) in breast cancer.
Surgery. 2021 May;169(5):1234-1239. doi: 10.1016/j.surg.2020.07.052. Epub 2020 Sep 19.
8
Down-regulation of tenascin-C inhibits breast cancer cells development by cell growth, migration, and adhesion impairment.
PLoS One. 2020 Aug 20;15(8):e0237889. doi: 10.1371/journal.pone.0237889. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验