Hu Wei-Yao, Li Kelin, Weitz Andrew, Wen Aiwen, Kim Hyomin, Murray Jessica C, Cheng Ronghai, Chen Baixiong, Naowarojna Nathchar, Grinstaff Mark W, Elliott Sean J, Chen Jie-Sheng, Liu Pinghua
Department of Chemistry, Boston University, Boston, MA, 02215, USA.
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
ACS Catal. 2022 Dec 2;12(23):14559-14570. doi: 10.1021/acscatal.2c04232. Epub 2022 Nov 14.
Rieske-type non-heme iron oxygenases/oxidases catalyze a wide range of transformations. Their applications in bioremediation or biocatalysis face two key barriers: the need of expensive NAD(P)H as a reductant and a proper reductase to mediate the electron transfer from NAD(P)H to the oxygenases. To bypass the need of both the reductase and NAD(P)H, using Rieske-type oxygenase (Stc2) catalyzed oxidative demethylation as the model system, we report Stc2 photocatalysis using eosin Y/sulfite as the photosensitizer/sacrificial reagent pair. In a flow-chemistry setting to separate the photo-reduction half-reaction and oxidation half-reaction, Stc2 photo-biocatalysis outperforms the Stc2-NAD(P)H-reductase (GbcB) system. In addition, in a few other selected Rieske enzymes (NdmA, CntA, and GbcA), and a flavin-dependent enzyme (iodotyrosine deiodinase, IYD), the eosin Y/sodium sulfite photo-reduction pair could also serve as the NAD(P)H-reductase surrogate to support catalysis, which implies the potential applicability of this photo-reduction system to other redox enzymes.
Rieske型非血红素铁加氧酶/氧化酶催化多种转化反应。它们在生物修复或生物催化中的应用面临两个关键障碍:需要昂贵的NAD(P)H作为还原剂以及需要合适的还原酶来介导从NAD(P)H到加氧酶的电子转移。为了绕过对还原酶和NAD(P)H的需求,我们以Rieske型加氧酶(Stc2)催化的氧化脱甲基反应为模型体系,报道了使用曙红Y/亚硫酸盐作为光敏剂/牺牲试剂对的Stc2光催化反应。在流动化学装置中分离光还原半反应和氧化半反应时,Stc2光生物催化优于Stc2-NAD(P)H-还原酶(GbcB)体系。此外,在其他几种选定的Rieske酶(NdmA、CntA和GbcA)以及一种黄素依赖性酶(碘酪氨酸脱碘酶,IYD)中,曙红Y/亚硫酸钠光还原对也可以作为NAD(P)H-还原酶替代物来支持催化反应,这意味着该光还原体系对其他氧化还原酶具有潜在的适用性。