Suppr超能文献

一种[铁铁]氢化酶-红氧还蛋白嵌合酶在食源性病原体中发挥作用,将氢氧化与过氧化氢还原偶联起来。

A [FeFe] Hydrogenase-Rubrerythrin Chimeric Enzyme Functions to Couple H Oxidation to Reduction of HO in the Foodborne Pathogen .

作者信息

Taylor Jesse, Mulder David W, Corrigan Patrick S, Ratzloff Michael W, Irizarry Gonzalez Natalia, Lubner Carolyn E, King Paul W, Silakov Alexey

机构信息

Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Biosciences Center, National Renewable Energy Lab, Golden, Colorado 80401, United States.

出版信息

J Am Chem Soc. 2025 Mar 19;147(11):9764-9773. doi: 10.1021/jacs.4c18425. Epub 2025 Mar 6.

Abstract

[FeFe] hydrogenases are a diverse class of H-activating enzymes with a wide range of utilities in nature. As H is a promising renewable energy carrier, exploration of the increasingly realized functional diversity of [FeFe] hydrogenases is instrumental for understanding how these remarkable enzymes can benefit society and inspire new technologies. In this work, we uncover the properties of a highly unusual natural chimera composed of a [FeFe] hydrogenase and rubrerythrin as a single polypeptide. The unique combination of [FeFe] hydrogenase with rubrerythrin, an enzyme that functions in HO detoxification, raises the question of whether catalytic reactions, such as H oxidation and HO reduction, are functionally linked. Herein, we express and purify a representative chimera from (termed HydR) and apply various electrochemical and spectroscopic approaches to determine its activity and confirm the presence of each of the proposed metallocofactors. The cumulative data demonstrate that the enzyme contains a surprising array of metallocofactors: the catalytic site of [FeFe] hydrogenase termed the H-cluster, two [4Fe-4S] clusters, two rubredoxin Fe(Cys) centers, and a hemerythrin-like diiron site. The absence of an H-evolution current in protein film voltammetry highlights an exceptional bias of this enzyme toward H oxidation to the greatest extent that has been observed for a [FeFe] hydrogenase. Here, we demonstrate that HydR uses H, catalytically split by the hydrogenase domain, to reduce HO by the diiron site. Structural modeling suggests a homodimeric nature of the protein. Overall, this study demonstrates that HydR is an H-dependent HO reductase. Equipped with this information, we discuss the possible role of this enzyme as a part of the oxygen-stress response system, proposing that HydR constitutes a new pathway for HO mitigation.

摘要

[铁铁]氢化酶是一类多样的氢激活酶,在自然界中有广泛的用途。由于氢是一种很有前景的可再生能源载体,探索[铁铁]氢化酶日益被认识到的功能多样性,对于理解这些非凡的酶如何造福社会并激发新技术至关重要。在这项工作中,我们揭示了一种由[铁铁]氢化酶和红素氧还蛋白组成的单一多肽的高度不寻常的天然嵌合体的特性。[铁铁]氢化酶与红素氧还蛋白(一种在过氧化氢解毒中起作用的酶)的独特结合,引发了催化反应(如氢氧化和过氧化氢还原)在功能上是否相关的问题。在此,我们从[具体来源]表达并纯化了一种代表性嵌合体(称为HydR),并应用各种电化学和光谱方法来确定其活性,并确认每个提议的金属辅因子的存在。累积数据表明,该酶含有一系列令人惊讶的金属辅因子:[铁铁]氢化酶的催化位点称为H簇、两个[4Fe-4S]簇、两个铁氧化还原蛋白铁(半胱氨酸)中心和一个类蚯蚓血红蛋白双铁位点。蛋白质膜伏安法中没有氢进化电流,突出了这种酶在最大程度上对氢氧化的异常偏向,这在[铁铁]氢化酶中是已观察到的。在这里,我们证明HydR利用由氢化酶结构域催化裂解的氢,通过双铁位点还原过氧化氢。结构建模表明该蛋白质具有同二聚体性质。总体而言,这项研究表明HydR是一种依赖氢的过氧化氢还原酶。有了这些信息,我们讨论了这种酶作为氧应激反应系统一部分的可能作用,提出HydR构成了一种新的过氧化氢缓解途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838e/11926857/20163fe41dab/ja4c18425_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验