Suppr超能文献

分层抽样下差异或比值效应参数的 MOVER 置信区间。

MOVER confidence intervals for a difference or ratio effect parameter under stratified sampling.

机构信息

Department of Biometrics, Grifols, Durham, North Carolina, USA.

出版信息

Stat Med. 2022 Jan 15;41(1):194-207. doi: 10.1002/sim.9230. Epub 2021 Oct 20.

Abstract

Stratification is commonly employed in clinical trials to reduce the chance covariate imbalances and increase the precision of the treatment effect estimate. We propose a general framework for constructing the confidence interval (CI) for a difference or ratio effect parameter under stratified sampling by the method of variance estimates recovery (MOVER). We consider the additive variance and additive CI approaches for the difference, in which either the CI for the weighted difference, or the CI for the weighted effect in each group, or the variance for the weighted difference is calculated as the weighted sum of the corresponding stratum-specific statistics. The CI for the ratio is derived by the Fieller and log-ratio methods. The weights can be random quantities under the assumption of a constant effect across strata, but this assumption is not needed for fixed weights. These methods can be easily applied to different endpoints in that they require only the point estimate, CI, and variance estimate for the measure of interest in each group across strata. The methods are illustrated with two real examples. In one example, we derive the MOVER CIs for the risk difference and risk ratio for binary outcomes. In the other example, we compare the restricted mean survival time and milestone survival in stratified analysis of time-to-event outcomes. Simulations show that the proposed MOVER CIs generally outperform the standard large sample CIs, and that the additive CI approach performs better than the additive variance approach. Sample SAS code is provided in the Supplementary Material.

摘要

分层通常用于临床试验中,以减少协变量不均衡的机会,并提高治疗效果估计的精度。我们提出了一种通过方差估计恢复(MOVER)方法对分层抽样下的差异或比值效应参数构建置信区间(CI)的一般框架。我们考虑了差异的加性方差和加性 CI 方法,其中要么计算加权差的 CI,要么计算每个组中加权效应的 CI,要么计算加权差的方差作为相应分层特定统计量的加权和。比值的 CI 通过 Fieller 和对数比值方法得出。在假设各层之间效应不变的情况下,权重可以是随机的,但对于固定权重,不需要此假设。这些方法可以轻松应用于不同的终点,因为它们仅需要在每个组中跨层对感兴趣的度量的点估计、CI 和方差估计。通过两个真实示例来说明这些方法。在一个示例中,我们为二项结局的风险差和风险比导出了 MOVER CI。在另一个示例中,我们在时间事件结局的分层分析中比较了受限平均生存时间和里程碑生存。模拟表明,所提出的 MOVER CI 通常优于标准大样本 CI,并且加性 CI 方法优于加性方差方法。示例 SAS 代码在补充材料中提供。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验