文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RUNX1 通过调控 TGFβ 靶基因的基础染色质可及性来实现高效的造血内皮细胞特化。

Efficient hemogenic endothelial cell specification by RUNX1 is dependent on baseline chromatin accessibility of RUNX1-regulated TGFβ target genes.

机构信息

Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia Pennsylvania 19104, USA.

Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

Genes Dev. 2021 Nov 1;35(21-22):1475-1489. doi: 10.1101/gad.348738.121. Epub 2021 Oct 21.


DOI:10.1101/gad.348738.121
PMID:34675061
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8559682/
Abstract

Hematopoietic stem and progenitor cells (HSPCs) are generated de novo in the embryo from hemogenic endothelial cells (HECs) via an endothelial-to-hematopoietic transition (EHT) that requires the transcription factor RUNX1. Ectopic expression of RUNX1 alone can efficiently promote EHT and HSPC formation from embryonic endothelial cells (ECs), but less efficiently from fetal or adult ECs. Efficiency correlated with baseline accessibility of TGFβ-related genes associated with endothelial-to-mesenchymal transition (EndoMT) and participation of AP-1 and SMAD2/3 to initiate further chromatin remodeling along with RUNX1 at these sites. Activation of TGFβ signaling improved the efficiency with which RUNX1 specified fetal ECs as HECs. Thus, the ability of RUNX1 to promote EHT depends on its ability to recruit the TGFβ signaling effectors AP-1 and SMAD2/3, which in turn is determined by the changing chromatin landscape in embryonic versus fetal ECs. This work provides insight into regulation of EndoMT and EHT that will guide reprogramming efforts for clinical applications.

摘要

造血干细胞和祖细胞 (HSPCs) 是从胚胎中的造血内皮细胞 (HECs) 从头生成的,通过需要转录因子 RUNX1 的内皮细胞向造血细胞过渡 (EHT)。单独异位表达 RUNX1 可以有效地促进胚胎内皮细胞 (ECs) 中的 EHT 和 HSPC 形成,但在胎儿或成人 ECs 中效率较低。效率与与内皮细胞向间充质细胞过渡 (EndoMT) 相关的 TGFβ 相关基因的基线可及性以及 AP-1 和 SMAD2/3 的参与相关,这些基因参与在这些位点启动与 RUNX1 一起的进一步染色质重塑。TGFβ 信号的激活提高了 RUNX1 将胎儿 ECs 指定为 HECs 的效率。因此,RUNX1 促进 EHT 的能力取决于其招募 TGFβ 信号效应物 AP-1 和 SMAD2/3 的能力,而这又取决于胚胎与胎儿 ECs 中不断变化的染色质景观。这项工作为调控 EndoMT 和 EHT 提供了深入的了解,这将为临床应用的重编程努力提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/40bc5a9d9905/1475f07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/2d93eabb6f0c/1475f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/b5b086e68562/1475f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/0e31671512fd/1475f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/09d7b9af2d60/1475f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/58d950c47024/1475f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/e371fed1bff7/1475f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/40bc5a9d9905/1475f07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/2d93eabb6f0c/1475f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/b5b086e68562/1475f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/0e31671512fd/1475f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/09d7b9af2d60/1475f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/58d950c47024/1475f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/e371fed1bff7/1475f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3755/8559682/40bc5a9d9905/1475f07.jpg

相似文献

[1]
Efficient hemogenic endothelial cell specification by RUNX1 is dependent on baseline chromatin accessibility of RUNX1-regulated TGFβ target genes.

Genes Dev. 2021-11-1

[2]
Opening the window for endothelial-to-hematopoietic transition.

Genes Dev. 2021-11-1

[3]
Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium.

Development. 2018-3-12

[4]
The Role of Runx1 in Embryonic Blood Cell Formation.

Adv Exp Med Biol. 2017

[5]
Runx1 is sufficient for blood cell formation from non-hemogenic endothelial cells only during early embryogenesis.

Development. 2018-1-29

[6]
Meis1 establishes the pre-hemogenic endothelial state prior to Runx1 expression.

Nat Commun. 2023-7-27

[7]
New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells.

Cell Cycle. 2016-8-17

[8]
De novo hematopoiesis from the fetal lung.

Blood Adv. 2023-11-28

[9]
Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells.

Dev Cell. 2016-8-22

[10]
Endothelio-mesenchymal interaction controls runx1 expression and modulates the notch pathway to initiate aortic hematopoiesis.

Dev Cell. 2013-3-25

引用本文的文献

[1]
Restraint of TGFβ family signaling by SMAD7 is necessary for hematopoietic stem cell maturation in the embryo.

bioRxiv. 2025-8-28

[2]
Multimodal analysis of hematopoiesis reveals blood cell-specific genetic impacts on complex disease traits.

bioRxiv. 2025-5-27

[3]
Integrated Local and Systemic Communication Factors Regulate Nascent Hematopoietic Progenitor Escape During Developmental Hematopoiesis.

Int J Mol Sci. 2024-12-31

[4]
Sox17 and Other SoxF-Family Proteins Play Key Roles in the Hematopoiesis of Mouse Embryos.

Cells. 2024-11-7

[5]
Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia.

Leukemia. 2025-1

[6]
Regulation of developmentally controlled enhancer activity by extrinsic signals in normal and malignant cells: AP-1 at the centre.

Front Epigenet Epigenom. 2024-9-16

[7]
Erythropoietin regulates energy metabolism through EPO-EpoR-RUNX1 axis.

Nat Commun. 2024-9-16

[8]
Tropomyosin 1 deficiency facilitates cell state transitions and enhances hemogenic endothelial cell specification during hematopoiesis.

Stem Cell Reports. 2024-9-10

[9]
New insights into the endothelial origin of hematopoietic system inspired by "TIF" approaches.

Blood Sci. 2024-7-16

[10]
Optimizing in vitro T cell differentiation by using induced pluripotent stem cells with GFP-RUNX1 and mCherry-TCF7 labelling.

Cell Prolif. 2024-10

本文引用的文献

[1]
TGFβ family signaling and development.

Development. 2021-3-12

[2]
RUNX1 regulates TGF-β induced migration and EMT in colorectal cancer.

Pathol Res Pract. 2020-11

[3]
Transcriptional regulatory network controlling the ontogeny of hematopoietic stem cells.

Genes Dev. 2020-6-4

[4]
Endothelial-to-haematopoietic transition: an update on the process of making blood.

Biochem Soc Trans. 2019-3-22

[5]
Identification of transcription factor binding sites using ATAC-seq.

Genome Biol. 2019-2-26

[6]
BiFET: sequencing Bias-free transcription factor Footprint Enrichment Test.

Nucleic Acids Res. 2019-1-25

[7]
Runt-Related Transcription Factor 1 (RUNX1) Promotes TGF-β-Induced Renal Tubular Epithelial-to-Mesenchymal Transition (EMT) and Renal Fibrosis through the PI3K Subunit p110δ.

EBioMedicine. 2018-5-11

[8]
HDAC1 and HDAC2 Modulate TGF-β Signaling during Endothelial-to-Hematopoietic Transition.

Stem Cell Reports. 2018-4-10

[9]
Runx1 is sufficient for blood cell formation from non-hemogenic endothelial cells only during early embryogenesis.

Development. 2018-1-29

[10]
Super resolution imaging of chromatin in pluripotency, differentiation, and reprogramming.

Curr Opin Genet Dev. 2017-8-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索